next up previous [pdf]

Next: Bibliography Up: Fomel & Stovas: Generalized Previous: Appendix D: REFLECTION FROM

Appendix E: HOMOGENEOUS VTI MODEL

According to the acoustic approximation of Alkhalifah (1998), one can use the following parametric equations to define the traveltime-offset relationship in a homogeneous VTI model:

$\displaystyle x(p)$ $\textstyle =$ $\displaystyle \frac{2\,H}{v_z}\,\frac{p\,v^2}{(1-2\,\eta\,p^2\,v^2)^2\,\sqrt{1-\frac{p^2\,v^2}{1-2\,\eta\,p^2\,v^2}}}\;,$ (78)
$\displaystyle t(p)$ $\textstyle =$ $\displaystyle \frac{2\,H}{v_z}\,\frac{(1-2\,\eta\,p^2\,v^2)^2 + 2\,\eta\,p^4\,v^4}
{(1-2\,\eta\,p^2\,v^2)^2\,\sqrt{1-\frac{p^2\,v^2}{1-2\,\eta\,p^2\,v^2}}}\;,$ (79)

where $p$ is the ray parameter, $H$ is the depth of the reflector, $v_z$ is the vertical velocity, $v$ is the NMO velocity, and $\eta $ is the dimensionless parameter introduced by Alkhalifah and Tsvankin (1995).

At small offsets, the homogeneous VTI traveltime behaves as

\begin{displaymath}
t^2(x) \approx t_0^2 + \frac{x^2}{v^2} - \frac{2\,\eta\,x^4}{t_0^2\,v^4}\;,
\end{displaymath} (80)

which allows us to define $A = - 4\,\eta$ according to equation 18.

At large offsets, the homogeneous VTI traveltime behaves as

\begin{displaymath}
t^2(x) \approx t_0^2\,(1+2\,\eta) + \frac{x^2}{v^2\,(1+2\,\eta)}\;.
\end{displaymath} (81)

Comparing with equation 24, we note that $T_{\infty} =
t_0\,\sqrt{1+2\,\eta}$ and $P_{\infty} =
1/(v\,\sqrt{1+2\,\eta})$. Substituting into equations 25-26, we derive the coefficients $B$ and $C$ to be
$\displaystyle B$ $\textstyle =$ $\displaystyle \frac{1 + 8\,\eta + 8\,\eta^2}{1 + 2\,\eta}\;,$ (82)
$\displaystyle C$ $\textstyle =$ $\displaystyle \frac{1}{(1 + 2\,\eta)^2}\;.$ (83)


next up previous [pdf]

Next: Bibliography Up: Fomel & Stovas: Generalized Previous: Appendix D: REFLECTION FROM

2013-03-02