A robust approach to time-to-depth conversion and interval velocity estimation from time migration in the presence of lateral velocity variations
Next:
About this document ...
Up:
Li & Fomel: Time-to-depth
Previous:
Appendix D: Analytical expressions
Bibliography
Bartel, D., M. Busby, J. Nealon, and J. Zaske, 2006, Time to depth conversion and uncertainty assessment using average velocity modeling: 66th Annual International Meetings, SEG Expanded Abstracts, 2166-2170.
Bevc, D., 1997, Imaging complex structures with semirecursive Kirchhoff migration: Geophysics,
62
, 577-588.
Bevc, D., J. L. Black, and G. Palacharla, 1995, Plumes: Response of time migration to lateral velocity variation: Geophysics,
60
, 1118-1127.
Bishop, T. N., K. P. Bube, R. T. Cutler, R. T. Langan, P. L. Love, J. R. Resnick, R. T. Shuey, D. A. Spindler, and H. W. Wyld, 1985, Tomographic determination of velocity and depth in laterally varying media: Geophysics,
50
, 903-923.
Björck, A., 1996, Numerical methods for least squares problems: SIAM.
Black, J. L., and M. A. Brzostowski, 1994, Systematics of time migration errors: Geophysics,
59
, 1419-1434.
Cameron, M., S. Fomel, and J. Sethian, 2007, Seismic velocity estimation from time migration: Inverse Problems,
23
, 1329-1369.
----, 2008, Time-to-depth conversion and seismic velocity estimation using time-migration velocity: Geophysics,
73
, no. 5, VE205-VE210.
----, 2009, Analysis and algorithms for a regularized Cauchy problem arising from a nonlinear elliptic PDE for seismic velocity estimation: Journal of Computational Physics,
228
, 7388-7411.
Chapman, C., 2004, Fundamentals of seismic wave propagation: Cambridge University Press.
Claerbout, J. F., 1996, Basic earth imaging: http://sepwww.stanford.edu/sep/prof/bei10.2008.pdf.
Dix, C. H., 1955, Seismic velocities from surface measurements: Geophysics,
20
, 68-86.
Engl, H. W., M. Hanke, and A. Neubauer, 1996, Regularization of inverse problems: Kluwer Academic Publishers.
Evans, L. C., 2010, Partial differential equations: American Mathematical Society.
Fomel, S., 2003, Time-migration velocity analysis by velocity continuation: Geophysics,
68
, 1662-1672.
----, 2007, Shaping regularization in geophysical estimation problems: Geophysics,
72
, no. 2, R29-R36.
Franklin, J. B., and J. M. Harris, 2001, A fast marching level set method for monotonically advancing fronts: Journal of Computational Acoustics,
9
, 1095-1109.
Haddon, R. A. W., and P. W. Buchen, 1981, Use of Kirchhoff's formula for body wave calculations in the earth: Geophysical Journal of the Royal Astronomical Society,
67
, 587-598.
Hestenes, M. R., and E. Stiefel, 1952, Method of conjugate gradients for solving linear systems: Journal of Research of the National Bureau of Standards,
49
, 409-436.
Hubral, P., 1977, Time migration--some ray theoretical aspects: Geophysical Prospecting,
25
, 738-745.
Iversen, E., and M. Tygel, 2008, Image-ray tracing for joint 3D seismic velocity estimation and time-to-depth conversion: Geophysics,
73
, S99-S114.
Larner, K. L., L. Hatton, B. S. Gibson, and I. S. Hsu, 1981, Depth migration of imaged time sections: Geophysics,
46
, 734-750.
Li, S., and S. Fomel, 2013, Kirchhoff migration using eikonal-based computation of traveltime source-derivatives: Geophysics,
78
, no. 4, S211-S219.
Li, S., S. Fomel, and A. Vladimirsky, 2011, Improving wave-equation fidelity of Gaussian beams by solving the complex eikonal equation: 71st Annual International Meetings, SEG Expanded Abstracts, 3829-3834.
Li, S., A. Vladimirsky, and S. Fomel, 2013, First-break traveltime tomography with the double-square-root eikonal equation: Geophysics,
78
, no. 6, U89-U101.
Popov, M. M., 2002, Ray theory and Gaussian beam method for geophysicists: EDUFBA.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 2007, Numerical recipes: The art of scientific computing: Cambridge University Press.
Robein, E., 2003, Velocities, time-imaging and depth-imaging in reflection seismics: EAGE.
Sethian, J., 1999, Fast marching methods: SIAM Review,
41
, 199-235.
Sethian, J. A., and A. M. Popovici, 1999, 3-D imaging using higher order fast marching traveltimes: Geophysics,
64
, 516-523.
Stork, C., and R. W. Clayton, 1992, Using constraints to address the instabilities of automated prestack velocity analysis: Geophysics,
57
, 404-419.
Tikhonov, A. N., 1963, Solution of incorrectly formulated problems and the regularization method: Sovet Math. Dokl., 1035-1038.
Cervený, V., 2001, Seismic ray theory: Cambridge University Press.
Xu, S., H. Chauris, G. Lambaré, and M. Noble, 2001, Common-angle migration: A strategy for imaging complex media: Geophysics,
66
, 1877-1894.
Yilmaz, O., 2001, Seismic data analysis: SEG.
Yilmaz, O., I. Tanir, and C. Gregory, 2001, A unified 3-d seismic workflow: Geophysics,
66
, 1699-1713.
Zhdanov, M., 2002, Geophysical inverse theory and regularization problems: Elsevier Science.
2015-03-25