next up previous [pdf]

Next: Bibliography Up: Sun et al.: Lowrank Previous: Acknowledgments


Appendix A: Proof of the stability of one-step wave extrapolation operator

In this appendix, we prove the unconditional stability of one-step wave extrapolation linear operator $ u = \L f$ in one-dimensional isotropic media defined by:

$\displaystyle u(x) = \sum\limits_{\xi \in z} e^{ 2\pi i(x \xi+V(x)\vert\xi\vert t)} \hat{f}(\xi)$   for$\displaystyle \quad f(x) \in l^2[0,1] \; ,$ (47)

where $ 2\pi\xi = \k$ , $ f(x)$ is assumed to have periodic boundary condition, and $ \hat{f}(\xi)$ is the Fourier transform of $ f(x)$ as defined by equation 3. We treat $ \xi$ as discrete and $ x$ as continuous for the ease of derivation. Our argument can be viewed as a discrete version of the standard stationary phase method in the study of pseudodifferential operators Stein (1993); Grigis and Sjöstrand (1994). To show that the operator $ \L$ is stable, a sufficient condition is that $ \Vert\L\Vert _{2 \to 2} \leq 1+Ct$ , where $ C$ is a bounded constant. From equation 47, we observe that operator $ \L$ is the composition of two operators $ \L = \mathbf{A}\mathbf{F}$ , where $ F$ is the inverse Fourier transform and $ \mathbf{A}$ is the operator defined by:

$\displaystyle (\mathbf{A}\omega)(z) = \sum\limits_{\xi\in z}e^{ 2\pi i(x \xi+V(x)\vert\xi\vert t)}\omega(\xi)$   for$\displaystyle \quad \omega \in l^2(z) \; .$ (48)

Let us consider $ \mathbf{A}^\intercal\mathbf{A}: l^2 \to l^2$ where $ \mathbf{A}$ corresponds to a matrix with $ (x,\xi)$ entry given by $ \mathbf{A}(x,\xi) = e^{ 2\pi i(x \xi+V(x)\vert\xi\vert t)}$ , and $ \mathbf{A}^\intercal$ corresponds to a matrix with $ (\eta,x)$ entry given by $ \mathbf{A}^\intercal(\eta,x) = e^{ -2\pi i(x \eta+V(x)\vert\eta\vert t)}$ . $ \mathbf{A}^\intercal\mathbf{A}$ represents a matrix with $ (\eta,\xi)$ entry given by:

$\displaystyle \mathbf{A}^\intercal\mathbf{A}(\eta,\xi) = \int e^{ 2\pi i[x(\xi-\eta)+V(x)(\vert\xi\vert-\vert\eta\vert)t]} dx\; .$ (49)

In order to bound the $ l^2 \to l^2$ norm of $ \mathbf{A}^\intercal\mathbf{A}$ we estimate the $ (\eta,\xi)$ entry of $ \mathbf{A}^\intercal\mathbf{A}$ . For $ \xi = \eta$ , we have $ \mathbf{A}^\intercal\mathbf{A}(\eta,\xi) = 1$ . For $ \xi \neq \eta$ :

$\displaystyle x(\xi-\eta)+V(x)(\vert\xi\vert-\vert\eta\vert)t = x(\xi-\eta)+V(x)\alpha(\xi-\eta)t \; ,$ (50)

with $ \alpha = (\vert\xi\vert-\vert\eta\vert)/(\xi-\eta)$ . Clearly, $ \vert\alpha\vert \leq 1
$ . Then $ \mathbf{A}^\intercal\mathbf{A}$ can be expressed as

$\displaystyle \mathbf{A}^\intercal\mathbf{A}(\eta,\xi) = \int e^{2\pi i(\xi-\eta)[x+V(x)\alpha t]}dx$ (51)

For sufficiently small $ t$ , $ x+V(x)\alpha t$ satisfies

$\displaystyle \frac{1}{2} \leq \nabla_x\left[x+V(x)\alpha t\right] \leq \frac{3}{2} \; .$ (52)

Equation 51 can be expressed as:
$\displaystyle \mathbf{A}^{\intercal}\mathbf{A}(\eta,\xi)$ $\displaystyle =$ $\displaystyle \int e^{2\pi i(\xi-\eta)[x+V(x)\alpha t]}\frac{1+V^{\prime}(x)\alpha t}{1+V^{\prime}(x)\alpha t} dx$ (53)
  $\displaystyle =$ $\displaystyle \int \frac{1}{1+V^{\prime}(x)\alpha t} e^{2\pi i(\xi-\eta)[x+V(x)\alpha t]} d\left[ x + V(x)\alpha t \right] \; .$  

Let us define $ y=x+V(x)\alpha t$ . From equation 52, it is clear that the map $ x \leftrightarrow y$ is one to one. Substituting $ y$ into equation 53 gives

$\displaystyle \mathbf{A}^{\intercal}\mathbf{A}(\eta,\xi) = \int \frac{1}{1+V^{\prime}(x(y))\alpha t} e^{2\pi i(\xi-\eta)y} dy \; ,$ (54)

which is the inverse Fourier transform of $ \frac{1}{1+V^{\prime}(x(y))\alpha t}$ . When $ t$ is small,
$\displaystyle \mathbf{A}^{\intercal}\mathbf{A}(\eta,\xi)$ $\displaystyle =$ $\displaystyle \int \left[ 1-V^{\prime}(x(y)\alpha t+\mathcal{O}(t^2)) \right]e^{2\pi i(\xi-\eta)y} dy$ (55)
  $\displaystyle =$ $\displaystyle -\alpha t \int V^{\prime}(x(y)) e^{2\pi i(\xi-\eta)y} dy + \mathcal{O}(t^2) \; .$  

To evaluate the norm of the integration term in the last equation, we perform integration by part for $ k$ -times and apply periodic boundary condition:

$\displaystyle \left\vert \int V^{\prime}(x(y)) e^{2\pi i(\xi-\eta)y} dy \right\...
...\pi i(\xi-\eta)y} \left \vert \partial_y^k V^{\prime}(x(y)) \right\vert dy \; .$ (56)

Assuming sufficient smoothness on $ V(x)$ , we have for $ \xi \neq \eta$

$\displaystyle \vert(\mathbf{A}^{\intercal}\mathbf{A}-\mathbf{I})(\eta,\xi)\vert \leq \frac{Ct}{\vert\xi-\eta\vert^k},$ (57)

for a constant C. To estimate the $ l^2 \to l^2$ norm of $ \mathbf{A}^{\intercal}\mathbf{A}$ , we make use of the following lemma which can be derived from direct calculation.

Lemma 1   Suppose $ \mathbf{G}: l^2\to l^2$ with $ \sum\limits_\xi\vert\mathbf{G}(\xi,\eta)\vert\leq C$ and $ \sum\limits_\eta\vert\mathbf{G}(\xi,\eta)\vert\leq C$ , then $ \mathbf{G}$ is a bounded $ l^2 \to l^2$ operator.

We now apply the above lemma to $ \mathbf{A}^{\intercal}\mathbf{A}- \mathbf{I}$ . When $ k \geq d$ where $ d$ is the spatial dimension, we have $ \sum\limits_{\xi\neq\eta}\frac{C}{\vert\xi-\eta\vert^k}$ bounded. Therefore, for sufficiently smooth $ V$ , we have $ \Vert\mathbf{A}^{\intercal}\mathbf{A}
- \mathbf{I} \Vert _{2\to 2} \leq Ct$ , for suffciently small $ t$ . Hence $ \Vert\mathbf{A}^{\intercal}\mathbf{A}\Vert _{2\to 2} \leq 1 + Ct$ and $ \Vert\mathbf{A}\Vert _{2\to
2} \leq 1 + Ct$ . Since $ \L = \mathbf{A}\mathbf{F}$ and $ \mathbf{F}$ as the Fourier transform is an isometry, we have $ \Vert\L\Vert _{2 \to 2} \leq 1+Ct$ .

When performing wave extrapolation, fix a final time $ T$ and propagate $ T/dt$ steps, the operator is stable since

$\displaystyle \Vert\L ^{T/t} \Vert _{2\to 2} \leq (1 + Ct)^{T/t} \leq e^{CT}.$ (58)


next up previous [pdf]

Next: Bibliography Up: Sun et al.: Lowrank Previous: Acknowledgments

2016-11-16