Data-driven time-frequency analysis of seismic data using non-stationary Prony method
Next:
About this document ...
Up:
Data-driven time-frequency analysis of
Previous:
Non-stationary Prony method
Bibliography
Castagna, J., S. Sun, and R. W. Siegfried, 2003, Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons: The Leading Edge,
22
, 120-127.
Chen, S. S., D. L. Donoho, and M. A. Saunders, 1998, Atomic decompositon by basis pursuit: Society for industrial and applied mathematics,
20
, 33-61.
Chen, Y., and S. Fomel, 2015, EMD-seislet transform: 85th Annual International Meeting, SEG, Expanded Abstracts, 4775-4778.
Chen, Y., T. Liu, X. Chen, J. Li, and E. Wang, 2014, Time-frequency analysis of seismic data using synchrosqueezing wavelet transform: Journal of Seismic Exploration,
23
, 303-312.
Cohen, L., 1989, Time-frequency distributions - A review: Proceedings of the IEEE,
77
, 941-981.
Daubechies, I., J. Lu, and H. T. Wu, 2011, Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool: Applied and Computational Harmonic Analysis,
30
, 243-261.
Ebrom, D., 2004, The low frequency gas shadows in seismic sections: The Leading Edge,
23
, 772.
Fomel, S., 2007, Shaping regularization in geophysical-estimation problems: Geophysics,
72
, R29-R36.
----, 2009, Adaptive multiple subtraction using regularized nonstationary regression: Geophysics,
74
, V25-V33.
----, 2013, Seismic data decomposition into spectral components using regularized nonstationary autoregression: Geophysics,
78
.
Han, J., and M. van der Baan, 2013, Empirical mode decomposition for seismic time-frequency analysis: Geophysics,
78
, O9-O19.
Hou, T. Y., and Z. Shi, 2013, Data-driven time-frequency analysis: Applied and Computational Harmonic Analysis,
35
, 284-308.
Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis: Proceeding of the Royal Society of London Series A,
454
, 903-995.
Huang, Z., J. Zhang, T. hu Zhao, and Y. Sun, 2015, Synchrosqueezing s-transform and its application in seismic spectral decomposition: IEEE Transactions on Geoscience and Remote Sensing,
54
, 817-825.
Kazemeini, S. H., C. Juhlin, K. Z. Jorgensen, and B. Norden, 2009, Application of the continuous wavelet transform on seismic data for mapping of channel deposits and gas detection at the CO2SINK site, Ketzin, Germany: Geophysical Prospecting,
57
, 111-123.
Liu, G., S. Fomel, and X. Chen, 2011, Time-frequency analysis of seismic data using local attributes: Geophysics,
76
, P23-P34.
Liu, W., S. Cao, and Y. Chen, 2016, Seismic time-frequency analysis via empirical wavelet transform: IEEE Geoscience and Remote Sensing Letters,
13
, 28-32.
Lobos, T., J.Rezmer, and J. Schegner, 2003, Parameter estimation of distorted signals using prony method: Power Tech Conference Proceedings, 41-44.
Mallat, S., 2009, A wavelet tour of signal processing: The sparse way: Academic Press.
Mallat, S., and Z. Zhang, 1993, Matching pursuit with time-frequency dictionaries: IEEE Transactions on Signal Processing,
41
, 3397-3415.
Mallat, S. G., 1989, A theory for multiresolution signal decomposition: The wavelet representation: IEEE Trans. Pattern Anal. Mach. Intell.,
11
, 674-693.
Mitrofanov, G., and V. Priimenko, 2015, Prony filtering of seismic data: Acta Geophys.,
63
, 652-678.
Oberlin, T., S. Meignen, and V. Perrier, 2014, The fourier-based synchrosqueezing transform: Proc. IEEE int. Conf. Acoust. Speech Signal Process, 315-319.
Peter, T., and G. Plonka, 2013, A generalized prony method for reconstruction of sparse sums of eigenfunctions of linear operators: Inverse Problems,
29
, 025001.
Prony, R., 1795, Essai expérimental et analytique: Annuaire de l'École Polytechnique,
1
, 24.
Reine, C., M. van der Baan, and R. Clark, 2009, The robustness of seismic attenuation measurements using fixed- and variable-window time-frequency transforms: Geophysics,
74
, 123-135.
Stockwell, R. G., L. Mansinha, and R. P. Lowe, 1996, Localization of the complex spectrum: IEEE Transactions on Signal Processing,
44
, 998-1001.
Tary, J. B., R. H. Herrera, J. Han, and M. van der Baan, 2014, Spectral estimation-what is new? what is next?: Reviews of Geophysics,
52
, 723-749.
Tikhonov, A. N., 1963, Solution of incorrectly formulated problems and the regularization method: Sovet Math. Dokl., 1035-1038.
Toh, K., and L. Trefethen, 1994, Pseudozeros of polynomials and pseudospectra of companion matrices: Mathematik,
68
, 403-425.
Torres, M. E., M. A. Colominas, G. Schlotthauer, and P. Flandrin, 2011, A complete ensemble empirical mode decomposition with adaptive noise: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 4144-4147.
(ISBN: 978-1-4577-0538-0 ISSN:1520-6149).
Wu, Z., and N. E. Huang, 2009, Ensemble empirical mode decomposition: a noise-assisted data analysis method: Advances in Adaptive Data Analysis,
1
, 1-41.
Yung-Huang, W., Y. Chien-Hung, Y. H. wen Vincent, H. Kun, and L. Men-Tzung, 2014, On the computational complexity of the empirical mode decomposition algorithm: Physica A: Statistical Mechanics and its Applications,
400
, 159-167.
2020-07-18