Bibliography

Castagna, J., S. Sun, and R. W. Siegfried, 2003, Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons: The Leading Edge, 22, 120-127.

Chen, S. S., D. L. Donoho, and M. A. Saunders, 1998, Atomic decompositon by basis pursuit: Society for industrial and applied mathematics, 20, 33-61.

Chen, Y., and S. Fomel, 2015, EMD-seislet transform: 85th Annual International Meeting, SEG, Expanded Abstracts, 4775-4778.

Chen, Y., T. Liu, X. Chen, J. Li, and E. Wang, 2014, Time-frequency analysis of seismic data using synchrosqueezing wavelet transform: Journal of Seismic Exploration, 23, 303-312.

Cohen, L., 1989, Time-frequency distributions - A review: Proceedings of the IEEE, 77, 941-981.

Daubechies, I., J. Lu, and H. T. Wu, 2011, Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool: Applied and Computational Harmonic Analysis, 30, 243-261.

Ebrom, D., 2004, The low frequency gas shadows in seismic sections: The Leading Edge, 23, 772.

Fomel, S., 2007, Shaping regularization in geophysical-estimation problems: Geophysics, 72, R29-R36.

----, 2009, Adaptive multiple subtraction using regularized nonstationary regression: Geophysics, 74, V25-V33.

----, 2013, Seismic data decomposition into spectral components using regularized nonstationary autoregression: Geophysics, 78.

Han, J., and M. van der Baan, 2013, Empirical mode decomposition for seismic time-frequency analysis: Geophysics, 78, O9-O19.

Hou, T. Y., and Z. Shi, 2013, Data-driven time-frequency analysis: Applied and Computational Harmonic Analysis, 35, 284-308.

Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis: Proceeding of the Royal Society of London Series A, 454, 903-995.

Huang, Z., J. Zhang, T. hu Zhao, and Y. Sun, 2015, Synchrosqueezing s-transform and its application in seismic spectral decomposition: IEEE Transactions on Geoscience and Remote Sensing, 54, 817-825.

Kazemeini, S. H., C. Juhlin, K. Z. Jorgensen, and B. Norden, 2009, Application of the continuous wavelet transform on seismic data for mapping of channel deposits and gas detection at the CO2SINK site, Ketzin, Germany: Geophysical Prospecting, 57, 111-123.

Liu, G., S. Fomel, and X. Chen, 2011, Time-frequency analysis of seismic data using local attributes: Geophysics, 76, P23-P34.

Liu, W., S. Cao, and Y. Chen, 2016, Seismic time-frequency analysis via empirical wavelet transform: IEEE Geoscience and Remote Sensing Letters, 13, 28-32.

Lobos, T., J.Rezmer, and J. Schegner, 2003, Parameter estimation of distorted signals using prony method: Power Tech Conference Proceedings, 41-44.

Mallat, S., 2009, A wavelet tour of signal processing: The sparse way: Academic Press.

Mallat, S., and Z. Zhang, 1993, Matching pursuit with time-frequency dictionaries: IEEE Transactions on Signal Processing, 41, 3397-3415.

Mallat, S. G., 1989, A theory for multiresolution signal decomposition: The wavelet representation: IEEE Trans. Pattern Anal. Mach. Intell., 11, 674-693.

Mitrofanov, G., and V. Priimenko, 2015, Prony filtering of seismic data: Acta Geophys., 63, 652-678.

Oberlin, T., S. Meignen, and V. Perrier, 2014, The fourier-based synchrosqueezing transform: Proc. IEEE int. Conf. Acoust. Speech Signal Process, 315-319.

Peter, T., and G. Plonka, 2013, A generalized prony method for reconstruction of sparse sums of eigenfunctions of linear operators: Inverse Problems, 29, 025001.

Prony, R., 1795, Essai expérimental et analytique: Annuaire de l'École Polytechnique, 1, 24.

Reine, C., M. van der Baan, and R. Clark, 2009, The robustness of seismic attenuation measurements using fixed- and variable-window time-frequency transforms: Geophysics, 74, 123-135.

Stockwell, R. G., L. Mansinha, and R. P. Lowe, 1996, Localization of the complex spectrum: IEEE Transactions on Signal Processing, 44, 998-1001.

Tary, J. B., R. H. Herrera, J. Han, and M. van der Baan, 2014, Spectral estimation-what is new? what is next?: Reviews of Geophysics, 52, 723-749.

Tikhonov, A. N., 1963, Solution of incorrectly formulated problems and the regularization method: Sovet Math. Dokl., 1035-1038.

Toh, K., and L. Trefethen, 1994, Pseudozeros of polynomials and pseudospectra of companion matrices: Mathematik, 68, 403-425.

Torres, M. E., M. A. Colominas, G. Schlotthauer, and P. Flandrin, 2011, A complete ensemble empirical mode decomposition with adaptive noise: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 4144-4147.
(ISBN: 978-1-4577-0538-0 ISSN:1520-6149).

Wu, Z., and N. E. Huang, 2009, Ensemble empirical mode decomposition: a noise-assisted data analysis method: Advances in Adaptive Data Analysis, 1, 1-41.

Yung-Huang, W., Y. Chien-Hung, Y. H. wen Vincent, H. Kun, and L. Men-Tzung, 2014, On the computational complexity of the empirical mode decomposition algorithm: Physica A: Statistical Mechanics and its Applications, 400, 159-167.




2020-07-18