Guide to madagascar programs: Difference between revisions

From Madagascar
Jump to navigation Jump to search
m →‎sfawefd2d: formatting
Fomels (talk | contribs)
ahay.org
 
(28 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<center><font size="-1">''This page was created from the LaTeX source in [https://github.com/ahay/src/blob/master/book/rsf/rsf/prog.tex book/rsf/rsf/prog.tex] using [[latex2wiki]]''</font></center>
<center><font size="-1">''This page was created from the LaTeX source in [https://github.com/ahay/src/blob/master/book/rsf/rsf/prog.tex book/rsf/rsf/prog.tex] using [[latex2wiki]]''</font></center>


This guide introduces some of the most used <tt>madagascar</tt> programs and illustrates their usage with examples.
This guide introduces some of the most used <tt> Madagascar </tt> programs and illustrates their usage with examples.
=Main programs=
=Main programs=
The source files for these programs can be found under [https://github.com/ahay/src/blob/master/system/main system/main] in the Madagascar distribution. The "main" programs perform general-purpose operations on RSF hypercubes regardless of the data dimensionality or physical dimensions.
The source files for these programs can be found under [https://github.com/ahay/src/blob/master/system/main system/main] in the Madagascar distribution. The "main" programs perform general-purpose operations on RSF hypercubes regardless of the data dimensionality or physical dimensions.
Line 47: Line 47:
</pre>
</pre>
In both cases, the size and shape of <tt>data1.rsf</tt> and
In both cases, the size and shape of <tt>data1.rsf</tt> and
<tt>data2.rsf</tt> hypercubes should be the same, and a warning
<tt>data2.rsf</tt> hypercubes should be the same, and a warning message is printed out if the axis sampling parameters (such as
message is printed out if the the axis sampling parameters (such as
<tt>o1</tt> or <tt>d1</tt>) in these files are different.
<tt>o1</tt> or <tt>d1</tt>) in these files are different.
====Implementation: [https://github.com/ahay/src/blob/master/system/main/add.c system/main/add.c]====
====Implementation: [https://github.com/ahay/src/blob/master/system/main/add.c system/main/add.c]====
Line 199: Line 198:
! colspan="4" style="background:#ffdead;" | Display dataset attributes.
! colspan="4" style="background:#ffdead;" | Display dataset attributes.
|-
|-
! colspan="4" | sfattr < in.rsf want=
! colspan="4" | sfattr < in.rsf lval=2 want=
|-
|-
|  colspan="4" |   <br>Sample output from "sfspike n1=100 | sfbandpass fhi=60 | sfattr"<br>******************************************* <br>rms = 0.992354 <br>mean value = 0.987576 <br>2-norm value = 9.92354 <br>variance = 0.00955481 <br>standard deviation = 0.0977487 <br>maximum value = 1.12735 at 97 <br>minimum value = 0.151392 at 100 <br>number of nonzero samples = 100 <br>total number of samples = 100 <br>******************************************* <br><br>rms                = sqrt[ sum(data^2) / n ]<br>mean              = sum(data) / n<br>norm              = sum(abs(data)^lval)^(1/lval)<br>variance          = [ sum(data^2) - n*mean^2 ] / [ n-1 ]<br>standard deviation = sqrt [ variance ]
|  colspan="4" | <br>Sample output from "sfspike n1=100 | sfbandpass fhi=60 | sfattr"<br>*******************************************<br>rms =     0.992354<br>mean =     0.987576<br>2-norm =       9.92354<br>variance =   0.00955481<br>std dev =     0.0977487<br>max =       1.12735 at 97<br>min =     0.151392 at 100<br>nonzero samples = 100<br>total samples = 100<br>*******************************************<br><br>rms                = sqrt[ sum(data^2) / n ]<br>mean              = sum(data) / n<br>norm              = sum(abs(data)^lval)^(1/lval)<br>variance          = [ sum(data^2) - n*mean^2 ] / [ n-1 ]<br>standard deviation = sqrt [ variance ]
|-
|-
| ''int '' || '''lval=2''' ||  || norm option, lval is a non-negative integer, computes the vector lval-norm
| ''int   '' || '''lval=2''' ||  || norm option, lval is a non-negative integer, computes the vector lval-norm
|-
|-
| ''string '' || '''want=''' ||  || 'all'(default),'rms','mean','norm','var','std','max','min','nonzero','samples','short'  
| ''string '' || '''want=''' ||  || 'all'(default), 'rms', 'mean', 'norm', 'var', <br>      'std', 'max', 'min', 'nonzero', 'samples', 'short'  
:want=  'rms' displays the root mean square
:want=  'rms' displays the root mean square
:want=  'norm' displays the square norm, otherwise specified by lval.
:want=  'norm' displays the square norm, otherwise specified by lval.
Line 226: Line 225:
is <math>\sqrt{\sum\limits_{i=0}^n d_i^2}</math>, the variance is
is <math>\sqrt{\sum\limits_{i=0}^n d_i^2}</math>, the variance is
<math>\frac{1}{n-1}\,\left[\sum\limits_{i=0}^n d_i^2 - \frac{1}{n}\left(\sum\limits_{i=0}^n d_i\right)^2\right]</math>, and the standard
<math>\frac{1}{n-1}\,\left[\sum\limits_{i=0}^n d_i^2 - \frac{1}{n}\left(\sum\limits_{i=0}^n d_i\right)^2\right]</math>, and the standard
deviation is the square root of the variance. Using <tt>sfattr</tt>
deviation is the square root of the variance. Using <tt>sfattr</tt> is a quick way to see the distribution of data values and check it for anomalies.
is a quick way to see the distribution of data values and check it for anomalies.


The output can be parsed using utilities such as <tt>awk</tt>, to extract only a numeric value for feeding it as a parameter value into a command line interface. Notice the backticks in the example below:
The output can be parsed using utilities such as <tt>awk</tt>, to extract only a numeric value for feeding it as a parameter value into a command line interface. Notice the backticks in the example below:
<bash>
<syntaxhighlight lang="bash">
sfgrey <vel.rsf allpos=y bias=`sfattr <vel.rsf want=min | awk '{print $4}'` | sfpen
sfgrey <vel.rsf allpos=y bias=`sfattr <vel.rsf want=min | awk '{print $4}'` | sfpen
</bash>
</syntaxhighlight>


====Implementation: [https://github.com/ahay/src/blob/master/system/main/attr.c system/main/attr.c]====
====Implementation: [https://github.com/ahay/src/blob/master/system/main/attr.c system/main/attr.c]====
Line 274: Line 272:




The data attributes are accumulated in corresponding double-precision
The data attributes are accumulated in corresponding double-precision variables.  
variables.  
<syntaxhighlight lang="c">
<syntaxhighlight lang="c">
    fsum += f;
    fsum += f;
Line 311: Line 308:
! colspan="4" style="background:#ffdead;" | Concatenate datasets.  
! colspan="4" style="background:#ffdead;" | Concatenate datasets.  
|-
|-
! colspan="4" | sfcat > out.rsf space= axis=3 nspace=(int) (ni/(20*nin) + 1) [<file0.rsf] file1.rsf file2.rsf ...  
! colspan="4" | sfcat > out.rsf order= space= axis=3 nspace=(int) (ni/(20*nin) + 1) o= d= [<file0.rsf] file1.rsf file2.rsf ...  
|-
|-
|  colspan="4" | sfmerge inserts additional space between merged data.
|  colspan="4" | sfmerge inserts additional space between merged data.
|-
|-
| ''int    '' || '''axis=3''' ||  || Axis being merged
| ''int    '' || '''axis=3''' ||  || Axis being merged
|-
| ''float  '' || '''d=''' ||  || axis sampling
|-
|-
| ''int    '' || '''nspace=(int) (ni/(20*nin) + 1)''' ||  || if space=y, number of traces to insert
| ''int    '' || '''nspace=(int) (ni/(20*nin) + 1)''' ||  || if space=y, number of traces to insert
|-
| ''float  '' || '''o=''' ||  || axis origin
|-
| ''ints  '' || '''order=''' ||  || concatenation order  [nin]
|-
|-
| ''bool  '' || '''space=''' ||  [y/n] || Insert additional space.
| ''bool  '' || '''space=''' ||  [y/n] || Insert additional space.
:y is default for sfmerge, n is default for sfcat
:y is default for sfmerge, n is default for sfcat
|}
|}


<tt>sfcat</tt> and <tt>sfmerge</tt> concatenate two or more files
<tt>sfcat</tt> and <tt>sfmerge</tt> concatenate two or more files
Line 474: Line 476:
|}
|}


A simple demonstration of the program can be made taking advantage that the complex-to-complex FFT is a linear operator:
A simple demonstration of the program can be made by taking advantage that the complex-to-complex FFT is a linear operator:


<bash>
<syntaxhighlight lang="bash">
sfspike n1=100 | sfrtoc > spike.rsf
sfspike n1=100 | sfrtoc > spike.rsf
< spike.rsf sffft axis=1 pad=1 > spike2.rsf
< spike.rsf sffft axis=1 pad=1 > spike2.rsf
sfcdottest sffft mod=spike.rsf dat=spike2.rsf axis=1 pad=1
sfcdottest sffft mod=spike.rsf dat=spike2.rsf axis=1 pad=1
</bash>
</syntaxhighlight>


The output should show values identical down to the last decimal:
The output should show values identical down to the last decimal:
Line 493: Line 495:
! colspan="4" style="background:#ffdead;" | Create a complex dataset from its real and imaginary parts.
! colspan="4" style="background:#ffdead;" | Create a complex dataset from its real and imaginary parts.
|-
|-
! colspan="4" | sfcmplx > cmplx.rsf real.rsf imag.rsf
! colspan="4" | sfcmplx < real.rsf > cmplx.rsf real.rsf imag.rsf
|-
|-
|  colspan="4" | There has to be only two input files specified and no additional parameters.
|  colspan="4" | There has to be only two input files specified and no additional parameters.
Line 562: Line 564:
! colspan="4" style="background:#ffdead;" | Generic conjugate-gradient solver for linear inversion  
! colspan="4" style="background:#ffdead;" | Generic conjugate-gradient solver for linear inversion  
|-
|-
! colspan="4" | sfconjgrad < dat.rsf mod=mod.rsf > to.rsf < from.rsf > out.rsf niter=1
! colspan="4" | sfconjgrad < dat.rsf mod=mod.rsf mwt=mwt.rsf known=known.rsf x0=x0.rsf > to.rsf < from.rsf > out.rsf niter=1
|-
| ''string '' || '''known=''' ||  || auxiliary input file name
|-
| ''file  '' || '''mod=''' ||  || auxiliary input file name
|-
| ''string '' || '''mwt=''' ||  || auxiliary input file name
|-
|-
| ''int    '' || '''niter=1''' ||  || number of iterations
| ''int    '' || '''niter=1''' ||  || number of iterations
|-
| ''string '' || '''x0=''' ||  || auxiliary input file name
|}
|}


Line 582: Line 592:
<math>\|\mathbf{d - L\,m}\|^2</math> for the given input data vector <math>\mathbf{d}</math>.  
<math>\|\mathbf{d - L\,m}\|^2</math> for the given input data vector <math>\mathbf{d}</math>.  


The pseudocode for <tt>sfconjgrad</tt> is given at the end of the [http://www.reproducibility.org/RSF/book/gee/lsq/paper.pdf "Model fitting with least squares" chapter] of ''Imaging Estimation by Example'' by Jon Claerbout, with the earliest form published in [http://sepwww.stanford.edu/data/media/public/oldreports/sep48/48_25.pdf "Conjugate Gradient Tutorial"] (SEP-48, 1986, same author). A simple toy implementation with a small matrix shows that this is algorithm produces the same steps as the algorithm described in equations 45-49 of [http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf "An introduction to the Conjugate Gradient Method Without the Agonizing Pain"] by J.R. Shewchuk, 1994, when the equation <math>A^T A x = A^T b</math> (in Shewchuk's notation) is solved. Multiplying with the transpose ensures a correct solution even when matrix A is square but not symmetric, or not square at all. The program [http://www.reproducibility.org/RSF/sfcconjgrad.html sfcconjgrad] implements this algorithm for the case when inputs are complex.
The pseudocode for <tt>sfconjgrad</tt> is given at the end of the [https://ahay.org/RSF/book/gee/lsq/paper.pdf "Model fitting with least squares" chapter] of ''Imaging Estimation by Example'' by Jon Claerbout, with the earliest form published in [http://sepwww.stanford.edu/data/media/public/oldreports/sep48/48_25.pdf "Conjugate Gradient Tutorial"] (SEP-48, 1986, same author). A simple toy implementation with a small matrix shows that this algorithm produces the same steps as the algorithm described in equations 45-49 of [http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf "An introduction to the Conjugate Gradient Method Without the Agonizing Pain"] by J.R. Shewchuk, 1994, when the equation <math>A^T A x = A^T b</math> (in Shewchuk's notation) is solved. Multiplying with the transpose ensures a correct solution even when matrix A is square but not symmetric at all. The program [https://ahay.org/RSF/sfcconjgrad.html sfcconjgrad] implements this algorithm for the case when inputs are complex.


Here is an example. The <tt>sfhelicon</tt>
Here is an example. The <tt>sfhelicon</tt> program implements Claerbout's multidimensional helical filtering
program implements Claerbout's multidimensional helical filtering
(Claerbout, 1998<ref>Claerbout, J.,  1998, Multidimensional recursive filters via a helix:  Geophysics, '''63''', 1532--1541.</ref>). It requires a filter to be specified in addition to the input and output vectors. We create a helical 2-D filter using the Unix <tt>echo</tt> command.
(Claerbout, 1998<ref>Claerbout, J.,  1998, Multidimensional recursive filters via a helix:  Geophysics, '''63''', 1532--1541.</ref>). It requires a filter to be specified in
addition to the input and output vectors. We create a helical  
2-D filter using the Unix <tt>echo</tt> command.
<pre>
<pre>
bash$ echo 1 19 20 n1=3 n=20,20 data_format=ascii_int in=lag.rsf > lag.rsf
bash$ echo 1 19 20 n1=3 n=20,20 data_format=ascii_int in=lag.rsf > lag.rsf
Line 645: Line 652:
norm value = 5.73563
norm value = 5.73563
</pre>
</pre>
In 10 iterations, the misfit decreased by an order of magnitude. The
The misfit decreased by an order of magnitude in 10 iterations. Running the program for more iterations can improve the result.
result can be improved by running the program for more iterations.


An equivalent implementation for complex-valued inputs is [http://www.reproducibility.org/RSF/sfcconjgrad.html sfcconjgrad]. A simple, lightweight Python implementation can be found in [http://sourceforge.net/p/rsf/code/HEAD/tree/trunk/user/fomels/conjgrad.py $PYTHONPATH/rsf/conjgrad.py].
An equivalent implementation for complex-valued inputs is [https://ahay.org/RSF/sfcconjgrad.html sfcconjgrad]. A lightweight Python implementation can be found in [https://github.com/ahay/src/blob/master/user/fomels/conjgrad.py $PYTHONPATH/rsf/conjgrad.py].


==sfcp==
==sfcp==
Line 654: Line 660:
! colspan="4" style="background:#ffdead;" | Copy or move a dataset.
! colspan="4" style="background:#ffdead;" | Copy or move a dataset.
|-
|-
! colspan="4" | sfcp in.rsf out.rsf
! colspan="4" | sfcp < in.rsf > out.rsf in.rsf out.rsf
|-
|-
|  colspan="4" | sfcp - copy, sfmv - move.<br>Mimics standard Unix commands.
|  colspan="4" | sfcp - copy, sfmv - move.<br>Mimics standard Unix commands.
Line 684: Line 690:
====Implementation: [https://github.com/ahay/src/blob/master/system/main/cp.c system/main/cp.c]====
====Implementation: [https://github.com/ahay/src/blob/master/system/main/cp.c system/main/cp.c]====
First, we look for the two first command-line arguments that don't
First, we look for the two first command-line arguments that don't
have the "=" character in them and consider them as the names of the
have the "=" character in them and consider them as the names of the input and the output files.   
input and the output files.   
<syntaxhighlight lang="c">
<syntaxhighlight lang="c">
     /* the first two non-parameters are in and out files */
     /* the first two non-parameters are in and out files */
Line 712: Line 717:
==sfcut==
==sfcut==
{| class="wikitable" align="center" cellspacing="0" border="1"
{| class="wikitable" align="center" cellspacing="0" border="1"
! colspan="4" style="background:#ffdead;" | Zero a portion of the dataset.  
! colspan="4" style="background:#ffdead;" | Zero a portion of the dataset.
|-
! colspan="4" | sfcut < in.rsf > out.rsf verb=n j#=(1,...) d#=(d1,d2,...) f#=(0,...) min#=(o1,o2,,...) n#=(0,...) max#=(o1+(n1-1)*d1,o2+(n1-1)*d2,,...)
|-
|  colspan="4" | <br>Reverse of window.
|-
| ''float  '' || '''d#=(d1,d2,...)''' ||  || sampling in #-th dimension
|-
| ''largeint'' || '''f#=(0,...)''' ||  || window start in #-th dimension
|-
| ''int    '' || '''j#=(1,...)''' ||  || jump in #-th dimension
|-
|-
! colspan="4" | sfcut < in.rsf > out.rsf verb=n [j1=1 j2=1 ... f1=0 f2=0 ... n1=n1 n2=n2 ... max1= max2= ... min1= min2= ...]
| ''float  '' || '''max#=(o1+(n1-1)*d1,o2+(n1-1)*d2,,...)''' ||  || maximum in #-th dimension
|-
|-
colspan="4" | jN defines the jump in N-th dimension<br>fN is the window start<br>nN is the window size<br>minN and maxN is the maximum and minimum in N-th dimension<br><br>Reverse of window.
| ''float '' || '''min#=(o1,o2,,...)''' ||  || minimum in #-th dimension
|-
| ''int    '' || '''n#=(0,...)''' ||  || window size in #-th dimension
|-
|-
| ''bool  '' || '''verb=n''' ||  [y/n] || Verbosity flag
| ''bool  '' || '''verb=n''' ||  [y/n] || Verbosity flag
|}
|}


The <tt>sfcut</tt> command is related to <tt>sfwindow</tt> and has the same
The <tt>sfcut</tt> command is related to <tt>sfwindow</tt> and has the same
set of arguments only instead of extracting the selected window, it fills it
set of arguments, only instead of extracting the selected window, it fills it
with zeroes. The size of the input data is preserved.  
with zeroes. The size of the input data is preserved.  
Examples:
Examples:
Line 752: Line 768:
! colspan="4" style="background:#ffdead;" | Convert between different formats.  
! colspan="4" style="background:#ffdead;" | Convert between different formats.  
|-
|-
! colspan="4" | sfdd < in.rsf > out.rsf line=8 form= type= format=
! colspan="4" | sfdd < in.rsf > out.rsf trunc=n line=8 ibm=n form= type= format=
|-
|-
| ''string '' || '''form=''' ||  || ascii, native, xdr
| ''string '' || '''form=''' ||  || ascii, native, xdr
|-
|-
| ''string '' || '''format=''' ||  || Element format (for conversion to ASCII)
| ''string '' || '''format=''' ||  || Element format (for conversion to ASCII)
|-
| ''bool  '' || '''ibm=n''' ||  [y/n] || Special case - assume integers actually represent IBM floats
|-
|-
| ''int    '' || '''line=8''' ||  || Number of numbers per line (for conversion to ASCII)
| ''int    '' || '''line=8''' ||  || Number of numbers per line (for conversion to ASCII)
|-
|-
| ''string '' || '''type=''' ||  || int, float, complex
| ''bool  '' || '''trunc=n''' ||  [y/n] || Truncate or round to nearest when converting from float to int/short
|-
| ''string '' || '''type=''' ||  || int, float, complex, short, long
|}
|}


Line 818: Line 838:


The <tt>sfdisfil</tt> program simply dumps the data contents to the standard
The <tt>sfdisfil</tt> program simply dumps the data contents to the standard
output in a text form. It is used mostly for debugging purposes to quickly
output in a text form. It is used mostly for debugging purposes to examine RSF files quickly. Here is an example:
examine RSF files. Here is an example:
<pre>
<pre>
bash$ sfmath o1=0 d1=2 n1=12 output=x1 > test.rsf
bash$ sfmath o1=0 d1=2 n1=12 output=x1 > test.rsf
Line 841: Line 860:
|-
|-
! colspan="4" | sfdottest mod=mod.rsf dat=dat.rsf > pip.rsf
! colspan="4" | sfdottest mod=mod.rsf dat=dat.rsf > pip.rsf
|-
| ''file  '' || '''dat=''' ||  || auxiliary input file name
|-
| ''file  '' || '''mod=''' ||  || auxiliary input file name
|}
|}


<tt>sfdottest</tt> is a generic dot-product test program for testing
<tt>sfdottest</tt> is a generic dot-product test program for testing
Line 863: Line 885:
where <tt>mod.rsf</tt> and <tt>dat.rsf</tt> are RSF files that
where <tt>mod.rsf</tt> and <tt>dat.rsf</tt> are RSF files that
represent vectors from the model and data spaces. Pay attention to the  
represent vectors from the model and data spaces. Pay attention to the  
dimension and size of these vectors! If the program does not respond
dimensions and size of these vectors! If the program does not respond
for a very long time, it is quite possible that the dimension and size
for a very long time, the dimension and size
of the vectors are inconsistent with the requirement of the program to be
of the vectors may be inconsistent with the requirement of the program to be
tested. <tt>sfdottest</tt>
tested. <tt>sfdottest</tt>
does not create any temporary files and does not have any restrictive
does not create any temporary files and has no restrictive
limitations on the size of the vectors.
limitations on the size of the vectors.
Here is an example. We first setup a vector with 100 elements using
Here is an example. We first create a vector with 100 elements using
<tt>sfspike</tt> and then run <tt>sfdottest</tt> to test the
<tt>sfspike</tt> and then run <tt>sfdottest</tt> to test the
<tt>sfcausint</tt> program. <tt>sfcausint</tt> implements a linear
<tt>sfcausint</tt> program. <tt>sfcausint</tt> implements a linear operator of causal integration and its adjoint, the anti-causal
operator of causal integration and its adjoint, the anti-causal
integration.
integration.
<pre>
<pre>
Line 917: Line 938:
! colspan="4" style="background:#ffdead;" | Output parameters from the header.
! colspan="4" style="background:#ffdead;" | Output parameters from the header.
|-
|-
! colspan="4" | sfget < in.rsf parform=y par1 par2 ...
! colspan="4" | sfget parform=y all=n par1 par2 ...
|-
| ''bool  '' || '''all=n''' ||  [y/n] || If output all values.
|-
|-
| ''bool  '' || '''parform=y''' ||  [y/n] || If y, print out parameter=value. If n, print out value.
| ''bool  '' || '''parform=y''' ||  [y/n] || If y, print out parameter=value. If n, print out value.
|}
|}


The <tt>sfget</tt> program extracts a parameter value from an RSF file. It is
The <tt>sfget</tt> program extracts a parameter value from an RSF file. It is
Line 942: Line 964:
</syntaxhighlight>
</syntaxhighlight>


Get the parameter value (as string) and output it as either
Get the parameter value (as a string) and output it as either
<tt>key=value</tt> or <tt>value</tt>, depending on the
<tt>key=value</tt> or <tt>value</tt>, depending on the
<tt>parform</tt> parameter.   
<tt>parform</tt> parameter.   
Line 962: Line 984:
|-
|-
|  colspan="4" | <br>The input data is a collection of traces n1xn2,<br>mask is an integer array of size n2.
|  colspan="4" | <br>The input data is a collection of traces n1xn2,<br>mask is an integer array of size n2.
|-
| ''file  '' || '''mask=''' ||  || auxiliary input file name
|}
|}


<tt>sfheadercut</tt> is close to <tt>sfheaderwindow</tt> but instead
<tt>sfheadercut</tt> is close to <tt>sfheaderwindow</tt> but instead
Line 1,009: Line 1,032:
   45:            0            0            0            0            0
   45:            0            0            0            0            0
</pre>
</pre>


==sfheadersort==
==sfheadersort==
Line 1,071: Line 1,092:
! colspan="4" style="background:#ffdead;" | Window a dataset based on a header mask.
! colspan="4" style="background:#ffdead;" | Window a dataset based on a header mask.
|-
|-
! colspan="4" | sfheaderwindow mask=head.rsf < in.rsf > out.rsf
! colspan="4" | sfheaderwindow mask=head.rsf < in.rsf > out.rsf inv=n
|-
|-
|  colspan="4" | <br>The input data is a collection of traces n1xn2,<br>mask is an integer array os size n2, windowed is n1xm2,<br>where m2 is the number of nonzero elements in mask.
|  colspan="4" | <br>The input data is a collection of traces n1xn2,<br>mask is an integer array os size n2, windowed is n1xm2,<br>where m2 is the number of nonzero elements in mask.
|-
| ''bool  '' || '''inv=n''' ||  [y/n] || inversion flag
|-
| ''file  '' || '''mask=''' ||  || auxiliary input file name
|}
|}


Line 1,121: Line 1,146:
In this case, only three traces are selected for the output. Thanks to
In this case, only three traces are selected for the output. Thanks to
the separation between headers and data, the operation of
the separation between headers and data, the operation of
<tt>sfheaderwindow</tt> is optimally efficient.  
<tt>sfheaderwindow</tt> is optimally efficient.


==sfin==
==sfin==
Line 1,127: Line 1,152:
! colspan="4" style="background:#ffdead;" | Display basic information about RSF files.
! colspan="4" style="background:#ffdead;" | Display basic information about RSF files.
|-
|-
! colspan="4" | sfin info=y check=2. trail=y file1.rsf file2.rsf ...
! colspan="4" | sfin info=y check=2. trail=y [<file0.rsf] file1.rsf file2.rsf ...
|-
|-
|  colspan="4" | n1,n2,... are data dimensions<br>o1,o2,... are axis origins<br>d1,d2,... are axis sampling intervals<br>label1,label2,... are axis labels<br>unit1,unit2,... are axis units
|  colspan="4" | n1,n2,... are data dimensions<br>o1,o2,... are axis origins<br>d1,d2,... are axis sampling intervals<br>label1,label2,... are axis labels<br>unit1,unit2,... are axis units
Line 1,197: Line 1,222:
</pre>
</pre>
To actually eliminate annoying trailing dimensions of length one (not just stop displaying them with <tt>trail=n</tt>), you may use <tt>sed</tt>. Example for eliminating axis 6:
To actually eliminate annoying trailing dimensions of length one (not just stop displaying them with <tt>trail=n</tt>), you may use <tt>sed</tt>. Example for eliminating axis 6:
<bash>
<syntaxhighlight lang="bash">
sed -i 's/n6=1//g' file.rsf
sed -i 's/n6=1//g' file.rsf
</bash>
</syntaxhighlight>


==sfinterleave==
==sfinterleave==
Line 1,256: Line 1,281:
! colspan="4" style="background:#ffdead;" | Create a mask.
! colspan="4" style="background:#ffdead;" | Create a mask.
|-
|-
! colspan="4" | sfmask < in.rsf > out.rsf min=-FLT_MAX max=+FLT_MAX
! colspan="4" | sfmask < in.rsf > out.rsf min= max=
|-
|-
|  colspan="4" | <br>Mask is an integer data with ones and zeros. <br>Ones correspond to input values between min and max.<br><br>The output can be used with sfheaderwindow.
|  colspan="4" | <br>Mask is an integer data with ones and zeros. <br>Ones correspond to input values between min and max.<br><br>The output can be used with sfheaderwindow.
|-
|-
| ''float  '' || '''max=+FLT_MAX''' ||  || maximum header value
| ''float  '' || '''max=''' ||  || maximum header value
|-
|-
| ''float  '' || '''min=-FLT_MAX''' ||  || minimum header value
| ''float  '' || '''min=''' ||  || minimum header value
|}
|}


Line 1,283: Line 1,308:
! colspan="4" style="background:#ffdead;" | Mathematical operations on data files.
! colspan="4" style="background:#ffdead;" | Mathematical operations on data files.
|-
|-
! colspan="4" | sfmath > out.rsf n#= d#=(1,1,...) o#=(0,0,...) label#= unit#= type= label= unit= output=
! colspan="4" | sfmath > out.rsf nostdin=n n#= d#=(1,1,...) o#=(0,0,...) label#= unit#= type= label= unit= output=
|-
|-
|  colspan="4" |   <br>Known functions: <br>cos,  sin,  tan,  acos,  asin,  atan, <br>cosh, sinh, tanh, acosh, asinh, atanh,<br>exp,  log,  sqrt, abs,<br>erf,  erfc (for float data),<br>arg,  conj, real, imag (for complex data).<br><br>sfmath will work on float or complex data, but all the input and output<br>files must be of the same data type.<br><br>An alternative to sfmath is sfadd, which may be more efficient, but is<br>less versatile.<br><br>Examples:<br><br>sfmath x=file1.rsf y=file2.rsf power=file3.rsf output='sin((x+2*y)^power)' > out.rsf<br>sfmath < file1.rsf tau=file2.rsf output='exp(tau*input)' > out.rsf<br>sfmath n1=100 type=complex output="exp(I*x1)" > out.rsf<br><br>Arguments which are not treated as variables in mathematical expressions:<br>datapath=, type=, out=<br><br>See also: sfheadermath.
|  colspan="4" | <br>Known functions: <br>cos,  sin,  tan,  acos,  asin,  atan, <br>cosh, sinh, tanh, acosh, asinh, atanh,<br>exp,  log,  sqrt, abs,<br>erf,  erfc, sign (for float data),<br>arg,  conj, real, imag (for complex data).<br><br>sfmath will work on float or complex data, but all the input and output<br>files must be of the same data type.<br><br>An alternative to sfmath is sfadd, which may be more efficient, but is<br>less versatile.<br><br>Examples:<br><br>sfmath x=file1.rsf y=file2.rsf power=file3.rsf output='sin((x+2*y)^power)' > out.rsf<br>sfmath < file1.rsf tau=file2.rsf output='exp(tau*input)' > out.rsf<br>sfmath n1=100 type=complex output="exp(I*x1)" > out.rsf<br><br>Arguments which are not treated as variables in mathematical expressions:<br>datapath=, type=, out=<br><br>See also: sfheadermath.
|-
|-
| ''float  '' || '''d#=(1,1,...)''' ||  || sampling on #-th axis
| ''float  '' || '''d#=(1,1,...)''' ||  || sampling on #-th axis
Line 1,294: Line 1,319:
|-
|-
| ''largeint'' || '''n#=''' ||  || size of #-th axis
| ''largeint'' || '''n#=''' ||  || size of #-th axis
|-
| ''bool  '' || '''nostdin=n''' ||  [y/n] || y - ignore stdin
|-
|-
| ''float  '' || '''o#=(0,0,...)''' ||  || origin on #-th axis
| ''float  '' || '''o#=(0,0,...)''' ||  || origin on #-th axis
Line 1,307: Line 1,334:


<tt>sfmath</tt> is a versatile program for mathematical operations
<tt>sfmath</tt> is a versatile program for mathematical operations
with RSF files. It can operate with several input files, all of the
with RSF files. It can operate with several input files with the
same dimensions and data type. The data type can be real (floating
same dimensions and data type. The data type can be real (floating
point) or complex. Here is an example that demonstrates several
point) or complex. The following example demonstrates several
features of <tt>sfmath</tt>.
features of <tt>sfmath</tt>.
<pre>
<pre>
Line 1,338: Line 1,365:
Here we refer to input files by names (<tt>r</tt> and <tt>a</tt>) and combine the names in a formula.
Here we refer to input files by names (<tt>r</tt> and <tt>a</tt>) and combine the names in a formula.


Functions can be nested and combined, and variable names, as well as the the <tt>input</tt> keyword may be combined with the axes keywords <tt>x1</tt>, <tt>x2</tt>, etc. Here is an example that shifts a wavelet -0.4s to t=0, computes the frequency-domain complex square root (equivalent to the convolutional square root in time), and shifts the result back to t=0.4s:
Functions can be nested and combined, and variable names, as well as the <tt>input</tt> keyword, may be combined with the axes keywords <tt>x1</tt>, <tt>x2</tt>, etc. Here is an example that shifts a wavelet -0.4s to t=0, computes the frequency-domain complex square root (equivalent to the convolutional square root in time), and shifts the result back to t=0.4s:
<bash>
<syntaxhighlight lang="bash">
pi=3.14159265
pi=3.14159265
tshift=0.4
tshift=0.4
Line 1,350: Line 1,377:
sfgraph |\
sfgraph |\
sfpen
sfpen
</bash>
</syntaxhighlight>


==sfpad==
==sfpad==
Line 1,358: Line 1,385:
! colspan="4" | sfpad < in.rsf > out.rsf beg#=0 end#=0 n#=
! colspan="4" | sfpad < in.rsf > out.rsf beg#=0 end#=0 n#=
|-
|-
|  colspan="4" | <br>   n#out is equivalent to n#, both of them overwrite end#.
|  colspan="4" | <br>n#out is equivalent to n#, both of them overwrite end#.<br><br>Other parameters from the command line are passed to the output (similar to sfput).
|-
|-
| ''int    '' || '''beg#=0''' ||  || the number of zeros to add before the beginning of #-th axis
| ''int    '' || '''beg#=0''' ||  || the number of zeros to add before the beginning of #-th axis
Line 1,412: Line 1,439:
<tt>sfput</tt> is a very simple program. It simply appends parameters
<tt>sfput</tt> is a very simple program. It simply appends parameters
from the command line to the output RSF file. One can achieve similar
from the command line to the output RSF file. One can achieve similar
results with editing the file by hand or with standard Unix utilities like
results by editing the file by hand or with standard Unix utilities like
<tt>sed</tt> and <tt>echo</tt>. <tt>sfput</tt> is sometimes more
<tt>sed</tt> and <tt>echo</tt>. <tt>sfput</tt> is sometimes more
convenient because it handles input/output operations similarly to
convenient because it handles input/output operations similarly to
Line 1,442: Line 1,469:


<tt>sfreal</tt> extracts the real part of a complex type dataset. The
<tt>sfreal</tt> extracts the real part of a complex type dataset. The
imaginary part can be extracted with <tt>sfimag</tt>, an the real
imaginary part can be extracted with <tt>sfimag</tt>, and the real
and imaginary part can be combined together with <tt>sfcmplx</tt>.
and imaginary part can be combined together with <tt>sfcmplx</tt>.
Here is a simple example. Let us first create a complex dataset  
Here is a simple example. Let us first create a complex dataset  
Line 1,471: Line 1,498:
! colspan="4" style="background:#ffdead;" | Reverse one or more axes in the data hypercube.  
! colspan="4" style="background:#ffdead;" | Reverse one or more axes in the data hypercube.  
|-
|-
! colspan="4" | sfreverse < in.rsf > out.rsf which=-1 verb=false memsize=sf_memsize() opt=
! colspan="4" | sfreverse < in.rsf > out.rsf which=-1 verb=n memsize=sf_memsize() opt=
|-
|-
| ''int    '' || '''memsize=sf_memsize()''' ||  || Max amount of RAM (in Mb) to be used
| ''int    '' || '''memsize=sf_memsize()''' ||  || Max amount of RAM (in Mb) to be used
Line 1,630: Line 1,657:
! colspan="4" style="background:#ffdead;" | Convert real data to complex (by adding zero imaginary part).
! colspan="4" style="background:#ffdead;" | Convert real data to complex (by adding zero imaginary part).
|-
|-
! colspan="4" | sfrtoc < real.rsf > cmplx.rsf
! colspan="4" | sfrtoc < real.rsf > cmplx.rsf pair=n
|-
|-
|  colspan="4" | <br>See also: sfcmplx
|  colspan="4" | <br>See also: sfcmplx
|-
| ''bool  '' || '''pair=n''' ||  [y/n] || y - use odd elements for the real part and even ones for the imaginary part
|}
|}
The input to <tt>sfrtoc</tt> can be any <tt>type=float</tt> dataset:
The input to <tt>sfrtoc</tt> can be any <tt>type=float</tt> dataset:
<pre>
<pre>
Line 1,663: Line 1,693:
! colspan="4" style="background:#ffdead;" | Scale data.
! colspan="4" style="background:#ffdead;" | Scale data.
|-
|-
! colspan="4" | sfscale < in.rsf > out.rsf axis=0 rscale=0. dscale=1.
! colspan="4" | sfscale < in.rsf > out.rsf axis=0 rscale=0. pclip=100. dscale=1.
|-
|-
|  colspan="4" | <br>To scale by a constant factor, you can also use sfmath or sfheadermath.
|  colspan="4" | <br>To scale by a constant factor, you can also use sfmath.
|-
|-
| ''int    '' || '''axis=0''' ||  || Scale by maximum in the dimensions up to this axis.
| ''int    '' || '''axis=0''' ||  || Scale by maximum in the dimensions up to this axis.
|-
|-
| ''float  '' || '''dscale=1.''' ||  || Scale by this factor (works if rscale=0)
| ''float  '' || '''dscale=1.''' ||  || Scale by this factor (works if rscale=0)
|-
| ''float  '' || '''pclip=100.''' ||  || data clip percentile
|-
|-
| ''float  '' || '''rscale=0.''' ||  || Scale by this factor.
| ''float  '' || '''rscale=0.''' ||  || Scale by this factor.
|}
|}
<tt>sfscale</tt> scales the input dataset by a factor. Here
<tt>sfscale</tt> scales the input dataset by a factor. Here
are some simple examples. First, let us create a test dataset.
are some simple examples. First, let us create a test dataset.
Line 1,703: Line 1,736:
   10:          0.2          0.4          0.6          0.8            1
   10:          0.2          0.4          0.6          0.8            1
</pre>
</pre>
The <tt>rscale=</tt> parameter is synonymous to <tt>dscale=</tt> except
The <tt>rscale=</tt> parameter is synonymous with <tt>dscale=</tt> except
when it is equal to zero. With <tt>sfscale dscale=0</tt>, the dataset gets
when it is equal to zero. With <tt>sfscale dscale=0</tt>, the dataset gets
multiplied by zero. If using <tt>rscale=0</tt>, the other parameters are
multiplied by zero. If using <tt>rscale=0</tt>, the other parameters are
Line 1,709: Line 1,742:
equivalent to <tt>sfscale axis=1</tt>, and <tt>sfscale rscale=0</tt>
equivalent to <tt>sfscale axis=1</tt>, and <tt>sfscale rscale=0</tt>
is equivalent to <tt>sfscale dscale=1</tt>.
is equivalent to <tt>sfscale dscale=1</tt>.


==sfspike==
==sfspike==
Line 1,720: Line 1,747:
! colspan="4" style="background:#ffdead;" | Generate simple data: spikes, boxes, planes, constants.  
! colspan="4" style="background:#ffdead;" | Generate simple data: spikes, boxes, planes, constants.  
|-
|-
! colspan="4" | sfspike > spike.rsf mag= nsp=1 k#=[0,...] l#=[k1,k2,...] p#=[0,...] n#= o#=[0,0,...] d#=[0.004,0.1,0.1,...] label#=[Time,Distance,Distance,...] unit#=[s,km,km,...] title=
! colspan="4" | sfspike < in.rsf > spike.rsf mag= nsp=1 k#=[0,...] l#=[k1,k2,...] p#=[0,...] n#= o#=[0,0,...] d#=[0.004,0.1,0.1,...] label#=[Time,Distance,Distance,...] unit#=[s,km,km,...] title=
|-
|-
|  colspan="4" | <br>Spike positioning is given in samples and starts with 1.
|  colspan="4" | <br>Spike positioning is given in samples and starts with 1.
Line 1,746: Line 1,773:
| ''string '' || '''unit#=[s,km,km,...]''' ||  || unit on #-th axis
| ''string '' || '''unit#=[s,km,km,...]''' ||  || unit on #-th axis
|}
|}


<tt>sfspike</tt> takes no input and generates an output with
<tt>sfspike</tt> takes no input and generates an output with
Line 1,825: Line 1,853:
   10:            0            0          0.6          0.4            0
   10:            0            0          0.6          0.4            0
</pre>
</pre>
<tt>sfspike</tt> supplies default dimensions and labels to all axis:
<tt>sfspike</tt> supplies default dimensions and labels to all axes:
<pre>
<pre>
bash&#36; sfspike n1=5 n2=3 n3=4 > spike.rsf
bash&#36; sfspike n1=5 n2=3 n3=4 > spike.rsf
Line 1,936: Line 1,964:
! colspan="4" style="background:#ffdead;" | Stack a dataset over one of the dimensions.
! colspan="4" style="background:#ffdead;" | Stack a dataset over one of the dimensions.
|-
|-
! colspan="4" | sfstack < in.rsf > out.rsf axis=2 rms=n norm=y min=n max=n
! colspan="4" | sfstack < in.rsf > out.rsf scale= axis=2 rms=n norm=y min=n max=n prod=n
|-
|-
|  colspan="4" | <br>This operation is adjoint to sfspray.
|  colspan="4" | <br>This operation is adjoint to sfspray.
|-
|-
| ''int    '' || '''axis=2''' ||  || which axis to stack
| ''int    '' || '''axis=2''' ||  || which axis to stack. If axis=0, stack over all dimensions
|-
|-
| ''bool  '' || '''max=n''' ||  [y/n] || If y, find maximum instead of stack.  Ignores rms and norm.
| ''bool  '' || '''max=n''' ||  [y/n] || If y, find maximum instead of stack.  Ignores rms and norm.
Line 1,947: Line 1,975:
|-
|-
| ''bool  '' || '''norm=y''' ||  [y/n] || If y, normalize by fold.
| ''bool  '' || '''norm=y''' ||  [y/n] || If y, normalize by fold.
|-
| ''bool  '' || '''prod=n''' ||  [y/n] || If y, find product instead of stack.  Ignores rms and norm.
|-
|-
| ''bool  '' || '''rms=n''' ||  [y/n] || If y, compute the root-mean-square instead of stack.
| ''bool  '' || '''rms=n''' ||  [y/n] || If y, compute the root-mean-square instead of stack.
|-
| ''floats '' || '''scale=''' ||  || optionally scale before stacking  [n2]
|}
|}
While <tt>sfspray</tt> adds a dimension to a hypercube,
While <tt>sfspray</tt> adds a dimension to a hypercube,
<tt>sfstack</tt> effectively removes one of the dimensions by stacking
<tt>sfstack</tt> effectively removes one of the dimensions by stacking
Line 1,997: Line 2,030:


The <tt>sftransp</tt> program transposes the input hypercube
The <tt>sftransp</tt> program transposes the input hypercube
exchanging the two axes specified by the <b>plane=</b> parameter.  
exchanging the two axes specified by the <tt>plane=</tt> parameter.  
<pre>
<pre>
bash&#36; sfspike n1=10 n2=20 n3=30 > orig123.rsf
bash&#36; sfspike n1=10 n2=20 n3=30 > orig123.rsf
Line 2,030: Line 2,063:
there but, if not enough memory is available, it performs a slower
there but, if not enough memory is available, it performs a slower
transpose out of core using disk operations. You can control the
transpose out of core using disk operations. You can control the
amount of available memory using the <b>memsize=</b> parameter or
amount of available memory using the <tt>memsize=</tt> parameter or
the <b>RSFMEMSIZE</b> environmental variable.
the <tt>RSFMEMSIZE</tt> environmental variable.


==sfwindow==
==sfwindow==
{| class="wikitable" align="center" cellspacing="0" border="1"
{| class="wikitable" align="center" cellspacing="0" border="1"
! colspan="4" style="background:#ffdead;" | Window a portion of the dataset.  
! colspan="4" style="background:#ffdead;" | Window a portion of a dataset.  
|-
|-
! colspan="4" | sfwindow < in.rsf > out.rsf verb=n squeeze=y j#=(1,...) d#=(d1,d2,...) f#=(0,...) min#=(o1,o2,,...) n#=(0,...) max#=(o1+(n1-1)*d1,o2+(n1-1)*d2,,...)
! colspan="4" | sfwindow < in.rsf > out.rsf verb=n squeeze=y j#=(1,...) d#=(d1,d2,...) f#=(0,...) min#=(o1,o2,,...) n#=(0,...) max#=(o1+(n1-1)*d1,o2+(n1-1)*d2,,...)
|-
|  colspan="4" | <br>Other parameters from the command line are passed to the output (similar to sfput).
|-
|-
| ''float  '' || '''d#=(d1,d2,...)''' ||  || sampling in #-th dimension
| ''float  '' || '''d#=(d1,d2,...)''' ||  || sampling in #-th dimension
|-
|-
| ''int    '' || '''f#=(0,...)''' ||  || window start in #-th dimension
| ''largeint'' || '''f#=(0,...)''' ||  || window start in #-th dimension
|-
|-
| ''int    '' || '''j#=(1,...)''' ||  || jump in #-th dimension
| ''int    '' || '''j#=(1,...)''' ||  || jump in #-th dimension
Line 2,049: Line 2,084:
| ''float  '' || '''min#=(o1,o2,,...)''' ||  || minimum in #-th dimension
| ''float  '' || '''min#=(o1,o2,,...)''' ||  || minimum in #-th dimension
|-
|-
| ''int    '' || '''n#=(0,...)''' ||  || window size in #-th dimension
| ''largeint'' || '''n#=(0,...)''' ||  || window size in #-th dimension
|-
|-
| ''bool  '' || '''squeeze=y''' ||  [y/n] || if y, squeeze dimensions equal to 1 to the end
| ''bool  '' || '''squeeze=y''' ||  [y/n] || if y, squeeze dimensions equal to 1 to the end
Line 2,102: Line 2,137:
   5:            12
   5:            12
</pre>
</pre>
Alternatively, <b>sfwindow</b> can use the minimum and maximum
Alternatively, <b>sfwindow</b> can select a window from the minimum and maximum
parameters to select a window. In the following example, we are
parameters. In the following example, we are
creating a dataset with <b>sfspike</b> and then windowing a portion of it
creating a dataset with <b>sfspike</b> and then windowing a portion of it
between 1 and 2 seconds in time and sampled at 8 miliseconds.
between 1 and 2 seconds in time and sampled at 8 miliseconds.
Line 2,171: Line 2,206:


Create input -- a (t,x,y) common-offset cube:
Create input -- a (t,x,y) common-offset cube:
<bash>
<syntaxhighlight lang="bash">
sfspike \
sfspike \
n1=128 o1=0.4 d1=0.0032 k1=65 label1=t \
n1=128 o1=0.4 d1=0.0032 k1=65 label1=t \
Line 2,177: Line 2,212:
n3=128 o3=-1.024 d3=0.016 k3=65 label3=y | \
n3=128 o3=-1.024 d3=0.016 k3=65 label3=y | \
sfbandpass flo=5 fhi=60 > spikebps.rsf
sfbandpass flo=5 fhi=60 > spikebps.rsf
</bash>
</syntaxhighlight>


Apply log-stretch FFT:
Apply log-stretch FFT:
<bash>
<syntaxhighlight lang="bash">
<spikebps.rsf sfstretch rule=L dens=4 |\
<spikebps.rsf sfstretch rule=L dens=4 |\
sffft1 |\
sffft1 |\
sffft3 axis=2 |\
sffft3 axis=2 |\
sffft3 axis=3 > spikefft3.rsf
sffft3 axis=3 > spikefft3.rsf
</bash>
</syntaxhighlight>


Compute AMO operator for a file of the dimensions of <tt>spikefft3.rsf</tt>. The only information taken from stdin are the n, o, d parameters:
Compute the AMO operator for a file of the dimensions of <tt>spikefft3.rsf</tt>. The only information taken from stdin are the n, o, d parameters:
<bash>
<syntaxhighlight lang="bash">
<spikefft3.rsf sffkamo h2=2 f2=10 h1=1.8 f1=30 >oper.rsf
<spikefft3.rsf sffkamo h2=2 f2=10 h1=1.8 f1=30 >oper.rsf
</bash>
</syntaxhighlight>


Apply the operator by multiplication and fft back to (t, mx, my):
Apply the operator by multiplication and fft back to (t, mx, my):
<bash>
<syntaxhighlight lang="bash">
< spikefft3.rsf sfadd mode=prod oper.rsf |\
< spikefft3.rsf sfadd mode=prod oper.rsf |\
sffft3 axis=3 inv=y |\
sffft3 axis=3 inv=y |\
Line 2,199: Line 2,234:
sffft1 inv=y |\
sffft1 inv=y |\
sfstretch rule=L dens=4 inv=y > spikeamo.rsf
sfstretch rule=L dens=4 inv=y > spikeamo.rsf
</bash>
</syntaxhighlight>


Prepare for 8-bit greyscale visualization:
Prepare for 8-bit greyscale visualization:
<bash>
<syntaxhighlight lang="bash">
< spikeamo.rsf sfbyte pclip=100 gainpanel=a > spikebyte.rsf
< spikeamo.rsf sfbyte pclip=100 gainpanel=a > spikebyte.rsf
</bash>
</syntaxhighlight>


Picture from the middle of the impulse response:
Picture from the middle of the impulse response:
<bash>
<syntaxhighlight lang="bash">
<spikebyte.rsf sfgrey3 frame1=65 frame2=129 frame3=65 \
<spikebyte.rsf sfgrey3 frame1=65 frame2=129 frame3=65 \
point1=0.333 title='AMO saddle, no f-k filter' | sfpen &
point1=0.333 title='AMO saddle, no f-k filter' | sfpen &
</bash>
</syntaxhighlight>


Picture illustrating the artifacts (i.e. need for f-k filter):
Picture illustrating the artifacts (i.e. need for f-k filter):
<bash>
<syntaxhighlight lang="bash">
< spikebyte.rsf sfgrey3 frame1=65 frame2=97 frame3=97 \
< spikebyte.rsf sfgrey3 frame1=65 frame2=97 frame3=97 \
point1=0.333 title='No f-k filter' | sfpen &
point1=0.333 title='No f-k filter' | sfpen &
</bash>
</syntaxhighlight>


Apply the f-k filter and (in this case) visualize:
Apply the f-k filter and (in this case) visualize:
<bash>
<syntaxhighlight lang="bash">
< spikeamo.rsf sffft1 |\
< spikeamo.rsf sffft1 |\
sffft3 axis=2 |\
sffft3 axis=2 |\
Line 2,230: Line 2,265:
sfgrey3 frame1=65 frame2=97 frame3=97 point1=0.333 title='With f-k filter' |\
sfgrey3 frame1=65 frame2=97 frame3=97 point1=0.333 title='With f-k filter' |\
sfpen &
sfpen &
</bash>
</syntaxhighlight>


==sfheaderattr==
==sfheaderattr==
Line 2,259: Line 2,294:
For different standard keywords, a minimum, maximum, and mean values
For different standard keywords, a minimum, maximum, and mean values
are reported unless they are identically zero.  This quick inspection
are reported unless they are identically zero.  This quick inspection
can help in identifying meaningful keywords set in the data. The input
can help identify meaningful keywords in the data. The input
data type must be <tt>int</tt>.
data type must be <tt>int</tt>.


Line 2,279: Line 2,314:
<tt>n2</tt> matrix that contains one row made out of mathematical
<tt>n2</tt> matrix that contains one row made out of mathematical
operations on the other rows. <tt>sfheadermath</tt> can identify a row
operations on the other rows. <tt>sfheadermath</tt> can identify a row
by number or by a standard SEGY keyword. The latter is useful for
by number or by a standard SEGY keyword. The latter is helpful in
processing headers extracted from SEGY or SU files.
processing headers extracted from SEGY or SU files.
Here is an example. First, we create an SU file with <tt>suplane</tt> and convert it to RSF using <tt>sfsegyread</tt>.
Here is an example. First, we create an SU file with <tt>suplane</tt> and convert it to RSF using <tt>sfsegyread</tt>.
Line 2,310: Line 2,345:
         32 elements 128 bytes
         32 elements 128 bytes
</pre>
</pre>
We defined "myheader" as being the row number 1 in the input (note
We defined "header" as being the row number 1 in the input (note
that numbering starts with 0) and combined it with "offset", which
that numbering starts with 0) and combined it with "offset", which
is a standard SEGY keyword that denotes row number 11 (see the output
is a standard SEGY keyword that denotes row number 11 (see the output
Line 2,369: Line 2,404:
The SEG Y format is an [http://en.wikipedia.org/wiki/Open_standard open standard] for the exchange of geophysical data. It is controlled by the non-profit [http://www.seg.org/SEGportalWEBproject/portals/SEG_Online.portal?_nfpb=true&_pageLabel=pg_gen_content&Doc_Url=prod/SEG-Publications/Pub-Yearbook/committees.htm SEG Technical Standards Committee]. There are two versions of this standard: [http://www.seg.org/SEGportalWEBproject/prod/SEG-Publications/Pub-Technical-Standards/Documents/seg_y_rev0.pdf rev0] (1975)<ref>Barry, K.M., Cavers, D.A., and Kneale, C.W. 1975. Recommended standards for digital tape formats. ''Geophysics'', '''40''', no. 02, 344–352.</ref> and [http://www.seg.org/SEGportalWEBproject/prod/SEG-Publications/Pub-Technical-Standards/Documents/seg_y_rev1.pdf rev1] (2002)<ref>Norris, M.W., Faichney, A.K., ''Eds''. 2001. SEG Y rev1 Data Exchange format. Society of Exploration Geophysicists, Tulsa, OK, 45 pp.</ref>. The implementation in <tt>sfsegyread</tt> is a mixture of rev0 (i.e. no checks for Extended Textual Headers) and rev1 ([http://en.wikipedia.org/wiki/IEEE_floating-point_standard IEEE floating point format] allowed for trace data samples).
The SEG Y format is an [http://en.wikipedia.org/wiki/Open_standard open standard] for the exchange of geophysical data. It is controlled by the non-profit [http://www.seg.org/SEGportalWEBproject/portals/SEG_Online.portal?_nfpb=true&_pageLabel=pg_gen_content&Doc_Url=prod/SEG-Publications/Pub-Yearbook/committees.htm SEG Technical Standards Committee]. There are two versions of this standard: [http://www.seg.org/SEGportalWEBproject/prod/SEG-Publications/Pub-Technical-Standards/Documents/seg_y_rev0.pdf rev0] (1975)<ref>Barry, K.M., Cavers, D.A., and Kneale, C.W. 1975. Recommended standards for digital tape formats. ''Geophysics'', '''40''', no. 02, 344–352.</ref> and [http://www.seg.org/SEGportalWEBproject/prod/SEG-Publications/Pub-Technical-Standards/Documents/seg_y_rev1.pdf rev1] (2002)<ref>Norris, M.W., Faichney, A.K., ''Eds''. 2001. SEG Y rev1 Data Exchange format. Society of Exploration Geophysicists, Tulsa, OK, 45 pp.</ref>. The implementation in <tt>sfsegyread</tt> is a mixture of rev0 (i.e. no checks for Extended Textual Headers) and rev1 ([http://en.wikipedia.org/wiki/IEEE_floating-point_standard IEEE floating point format] allowed for trace data samples).


A SEG-Y file as understood by <tt>sfsegyread</tt> contains a "Reel Identification Header" (3200 bytes in EBCDIC followed by 400 bytes in a binary encoding), followed by a number of "Trace Blocks". Each "Trace Block" contains a 240-byte "Trace Header" (binary) followed by "Trace Data" -- a sequence of <tt>ns</tt> samples. Binary values in both reel headers and trace headers are two's complement integers, either two bytes or four bytes long. There are no floating-point values defined in the headers. Trace Data samples can have various encodings, either floating point or integer, described further down, but they are all big-endian. To convert from SEG-Y to RSF, <tt>sfsegyread</tt> will strip the tape reel EBCDIC header and convert it to ASCII, will extract the reel binary header without changing it, and will put the trace headers into one RSF file, and the traces themselves on another.
An SEG-Y file, as understood by <tt>sfsegyread</tt>, contains a "Reel Identification Header" (3200 bytes in EBCDIC followed by 400 bytes in a binary encoding), followed by a number of "Trace Blocks." Each "Trace Block" contains a 240-byte "Trace Header" (binary) followed by "Trace Data" -- a sequence of <tt>ns</tt> samples. Binary values in both reel headers and trace headers are two's complement integers, either two bytes or four bytes long. There are no floating-point values defined in the headers. Trace Data samples can have various encodings, either floating point or integer, described further down, but they are all big-endian. To convert from SEG-Y to RSF, <tt>sfsegyread</tt> will strip the tape reel EBCDIC header and convert it to ASCII, will extract the reel binary header without changing it, and will put the trace headers into one RSF file, and the traces themselves on another.


===SEG-Y Trace Headers===
===SEG-Y Trace Headers===
In the SEG-Y standard, only the first 180 bytes of the 240-byte trace header are defined; bytes 181-240 are reserved for non-standard header information, and these locations are increasingly used in modern SEG-Y files and its variants. The standard provides for a total of 71 4-byte and 2-byte predefined header words. These 71 standard words have defined lengths and byte offsets, and only these words and byte locations are read using <tt>segyread</tt> and output to the RSF header file with the <tt>tfile=</tt> option. The user may remap these predefined keywords to a different byte offsets.
In the SEG-Y standard, only the first 180 bytes of the 240-byte trace header are defined; bytes 181-240 are reserved for non-standard header information, and these locations are increasingly used in modern SEG-Y files and their variants. The standard provides for a total of 71 4-byte and 2-byte predefined header words. These 71 standard words have defined lengths and byte offsets, and only these words and byte locations are read using <tt>segyread</tt> and output to the RSF header file with the <tt>tfile=</tt> option. The user may remap these predefined keywords to different byte offsets.


===SU File Format===
===SU File Format===
An [http://www.cwp.mines.edu/sututor/node22.html SU file] is nothing more than a SEG-Y file without the reel headers, and with the Trace Data samples in the native encoding of the CPU the file was created on (Attention -- limited portability!). So, to convert from SU to RSF, <tt>sfsegyread</tt> will just separate headers and traces into two RSF files.  
An [http://www.cwp.mines.edu/sututor/node22.html SU file] is nothing more than an SEG-Y file without the reel headers and with the Trace Data samples in the native encoding of the CPU the file was created on (Attention -- limited portability!). So, to convert from SU to RSF, <tt>sfsegyread</tt> will just separate headers and traces into two RSF files.  


===SEG-Y specific parameters===
===SEG-Y specific parameters===
*<tt>hfile=</tt> specifies the name of the file in which the EBCDIC reel header will be put after conversion to ASCII. If you are certain there is no useful information in it, <tt>hfile=/dev/null</tt> works just fine. If you do not specify anything for this parameter you will get an ASCII file named <tt>header</tt> in the current directory. If you want to quickly preview this header before running <tt>sfsegyread</tt>, use<pre>dd if=input.segy count=40 bs=80 cbs=80 conv=unblock,ascii</pre>
*<tt>hfile=</tt> specifies the name of the file in which the EBCDIC reel header will be put after conversion to ASCII. If you are certain there is no useful information in it, <tt>hfile=/dev/null</tt> works just fine. If you do not specify anything for this parameter, you will get an ASCII file named <tt>header</tt> in the current directory. If you want to quickly preview this header before running <tt>sfsegyread</tt>, use<pre>dd if=input.segy count=40 bs=80 cbs=80 conv=unblock,ascii</pre>
*<tt>bfile=</tt> specifies name of the file in which the binary reel header (the 400-bytes thing following the 3600-bytes EBCDIC) will be put without any conversion. The default name is "binary". Unless you have software that knows how to read exactly this special type of file, it will be completely useless, so do <tt>bfile=/dev/null</tt>
*<tt>bfile=</tt> specifies the name of the file in which the binary reel header (the 400-byte thing following the 3600-byte EBCDIC) will be put without any conversion. The default name is "binary". Unless you have software that knows how to read exactly this special type of file, it will be completely useless, so do <tt>bfile=/dev/null</tt>
*<tt>format=</tt> specifies the format in which the trace data samples are in the SEG-Y input file. This is read from the binary reel header of the SEG-Y file. Valid values are 1(IBM floating point), 2 (4-byte integer), 3 (2-byte integer) and 5 (IEEE floating point). If the input file is SU, the format will be assumed to be the native <tt>float</tt> format.
*<tt>format=</tt> specifies the format in which the trace data samples are in the SEG-Y input file. This is read from the binary reel header of the SEG-Y file. Valid values are 1(IBM floating point), 2 (4-byte integer), 3 (2-byte integer), and 5 (IEEE floating point). If the input file is SU, the format will be assumed to be the native <tt>float</tt> format.


*<tt>keyname=</tt> specifies the byte offset to remap a header using the trace header key names shown above. For example, if the CDP locations have been placed in bytes 181-184 instead of the standard 21-24, <tt>cdp=180</tt> will remap the trace header to that location.  
*<tt>keyname=</tt> specifies the byte offset to remap a header using the trace header key names shown above. For example, if the CDP locations have been placed in bytes 181-184 instead of the standard 21-24, <tt>cdp=180</tt> will remap the trace header to that location.  


===SU-specific parameters===
===SU-specific parameters===
*<tt>suxdr=</tt> specifies whether the input file was created with a SU package with XDR support enabled. If you have access to the source code of your SU install (try <tt>$CWPROOT/src</tt>), type: <tt>grep 'XDRFLAG =' $CWPROOT/src/Makefile.config</tt> and look at the last uncommented entry. If no value is given for <tt>XDRFLAG</tt>, the package was not compiled with XDR support.
*<tt>suxdr=</tt> specifies whether the input file was created with an SU package with XDR support enabled. If you have access to the source code of your SU install (try <tt>$CWPROOT/src</tt>), type: <tt>grep 'XDRFLAG =' $CWPROOT/src/Makefile.config</tt> and look at the last uncommented entry. If no value is given for <tt>XDRFLAG</tt>, the package was not compiled with XDR support.
===Common parameters===
===Common parameters===
*<tt>su=</tt> specifies if the input file is SU or SEG-Y. Default is <tt>su=n</tt> (SEG-Y file).
*<tt>su=</tt> specifies if the input file is SU or SEG-Y. The default is <tt>su=n</tt> (SEG-Y file).
*<tt>read=</tt> specifies what parts of the "Trace Blocks" will be read. It can be <tt>read=d</tt> (only trace data is read), <tt>read=h</tt> (only trace headers are read) or <tt>read=b</tt> (both are read).
*<tt>read=</tt> specifies what parts of the "Trace Blocks" will be read. It can be <tt>read=d</tt> (only trace data is read), <tt>read=h</tt> (only trace headers are read) or <tt>read=b</tt> (both are read).
*<tt>tfile=</tt> gives the name of the RSF file to which trace headers are written. Obviously, it should be only specified with <tt>read=h</tt> or <tt>read=b</tt>.
*<tt>tfile=</tt> gives the name of the RSF file to which trace headers are written. Obviously, it should be only specified with <tt>read=h</tt> or <tt>read=b</tt>.
*<tt>mask=</tt> is an optional parameter specifying the name of a mask that says which traces will be read. The mask is a 1-D RSF file with integers. The number of samples in the mask is the same as the number of traces in the unmasked SEG-Y. In places corresponding to unwanted traces there should be zeros in the mask.
*<tt>mask=</tt> is an optional parameter specifying the name of a mask that says which traces will be read. The mask is a 1-D RSF file with integers. The number of mask samples is the same as the number of traces in the unmasked SEG-Y. There should be zeros in the mask in places corresponding to unwanted traces.
*<tt>ns=</tt> specifies the number of samples in a trace. For SEG-Y files, the default is taken from the binary reel header, and for SU files, from the header of the first trace. This parameter is however critical enough that a command line override was given for it.
*<tt>ns=</tt> specifies the number of samples in a trace. For SEG-Y files, the default is taken from the binary reel header, and for SU files, from the header of the first trace. This parameter is, however, critical enough that a command line override was given for it.
*<tt>verbose=</tt> is the verbosity flag. Can be <tt>y</tt> or <tt>n</tt>.
*<tt>verbose=</tt> is the verbosity flag. Can be <tt>y</tt> or <tt>n</tt>.
*<tt>endian=</tt> is a y/n flag (default y), specifying whether to automatically estimate or not if samples in the Trace Data blocks are big-endian or little-endian. Try it if you are in trouble and do not know what else to do, otherwise let the automatic estimation do its job.
*<tt>endian=</tt> is a y/n flag (default y), specifying whether to estimate automatically or not if samples in the Trace Data blocks are big-endian or little-endian. Try it if you are in trouble and do not know what else to do; otherwise, let the automatic estimation do its job.


==sfsegywrite==
==sfsegywrite==
Line 2,415: Line 2,450:
| ''bool  '' || '''verb=n''' ||  [y/n] ||  Verbosity flag
| ''bool  '' || '''verb=n''' ||  [y/n] ||  Verbosity flag
|}
|}
Please see <tt>sfsegyread</tt> for a complete description of parameter meanings and background issues. Parameters <tt>bfile</tt> and <tt>hfile</tt> should only be given values when the desired file is SEG-Y (default). The output file is specified by the <tt>tape=</tt> tag.
Please see <tt>sfsegyread</tt> for a complete description of parameter meanings and background issues. Parameters <tt>bfile</tt> and <tt>hfile</tt> should only be given values when the desired file is SEG-Y (default). The <tt>tape=</tt> tag specifies the output file.
=Generic programs=
=Generic programs=
Programs in this category are general signal and image processing programs. The source files for these programs can be found under [http://rsf.svn.sourceforge.net/viewvc/rsf/trunk/system/generic/ system/generic] in the Madagascar distribution.
Programs in this category are general signal and image processing programs. The source files for these programs can be found under [http://rsf.svn.sourceforge.net/viewvc/rsf/trunk/system/generic/ system/generic] in the Madagascar distribution.
Line 2,668: Line 2,703:
|}
|}


Different [http://reproducibility.org/rsflog/index.php?/archives/14-Color-schemes.html color schemes] are available
Different [https://ahay.org/blog/2005/03/28/color-schemes/ color schemes] are available
for sfgrey and sfgrey3. Examples are in the book at [http://reproducibility.org/RSF/book/rsf/rsf/sfgrey.html rsf/rsf/sfgrey].
for sfgrey and sfgrey3. Examples are in the book at [https://ahay.org/RSF/book/rsf/rsf/sfgrey.html rsf/rsf/sfgrey].


==sfgrey==
==sfgrey==
Line 2,722: Line 2,757:
|}
|}


Different [http://reproducibility.org/rsflog/index.php?/archives/14-Color-schemes.html color schemes] are available
Different [https://ahay.org/blog/2005/03/28/color-schemes/ color schemes] are available, and examples are in the book at [https://ahay.org/RSF/book/rsf/rsf/sfgrey.html rsf/rsf/sfgrey].
and examples are in the book at [http://reproducibility.org/RSF/book/rsf/rsf/sfgrey.html rsf/rsf/sfgrey].


==sfplas==
==sfplas==
Line 2,861: Line 2,895:
=Plotting programs (development)=
=Plotting programs (development)=
==sfplsurf==
==sfplsurf==
<tt>sfplsurf</tt> utilizes PLplot's surface rendering capabilities. Output is dumped to stdout in VPLOT format, so it can easily be used in the same way as <tt>sfgrey</tt> or other plotting programs. It also supports animation, if n3 > 1 in the input file. A SConstruct usage example can be found below. A [http://reproducibility.org/wikilocal/movies/sfplsurf_membrane.mpg movie of the output] is available as well.
<tt>sfplsurf</tt> utilizes PLplot's surface rendering capabilities. Output is dumped to stdout in VPLOT format, so it can easily be used like <tt>sfgrey</tt> or other plotting programs. It also supports animation, if n3 > 1 in the input file. A SConstruct usage example can be found below. A [https://ahay.org/wikilocal/movies/sfplsurf_membrane.mpg movie of the output] is available as well.


<syntaxhighlight lang="python">
<syntaxhighlight lang="python">
Line 2,998: Line 3,032:
Short description of the algorithm:
Short description of the algorithm:
# Start from the top (first time slice), pick an initial (source) point, evaluate all other points with the direct traveltime.
# Start from the top (first time slice), pick an initial (source) point, evaluate all other points with the direct traveltime.
# At each grid point at the next level, find the traveltime to points at the previous level, add the traveltimes from the previous level, and select minimum. The search radius is limited by the aperture (gate= parameter in sfpick).
# At each grid point at the next level, find the traveltime to points at the previous level, add the traveltimes from the previous level, and select minimum. The aperture (gate= parameter in sfpick) limits the search radius.
# Repeat step 2 until reaching the bottom.
# Repeat step 2 until reaching the bottom.
# Pick the minimum traveltime at the bottom and track the ray back to the source by following the traveltime gradient direction.
# Pick the minimum traveltime at the bottom and track the ray back to the source by following the traveltime gradient direction.
# Postprocessing (smooth= parameter in sfpick): smooth the picked ray path using shaping regularization.
# Postprocessing (smooth= parameter in sfpick): smooth the picked ray path using shaping regularization.


The algorithm was discovered and rediscovered by many people. The best reference is probably ''V. Meshbey, E. Ragoza, D. Kosloff, U. Egozi, and D. Wexler, 2002, Three-dimensional Travel-time Calculation Based on Fermat's Principle: Pure and Applied Geophysics, v. 159, 1563-1582.''
Many people have discovered and rediscovered the algorithm. The best reference is probably ''V. Meshbey, E. Ragoza, D. Kosloff, U. Egozi, and D. Wexler, 2002, Three-dimensional Travel-time Calculation Based on Fermat's Principle: Pure and Applied Geophysics, v. 159, 1563-1582.''


=user/ivlad programs=
=user/ivlad programs=
Line 3,012: Line 3,046:
! colspan="4" | sfprep4plot inp= out= verb=n h=none w=none unit= ppi= prar=y
! colspan="4" | sfprep4plot inp= out= verb=n h=none w=none unit= ppi= prar=y
|-
|-
|  colspan="4" | Only one of the h and w parameters needs to be specified.<br>If prar=n, no action will be taken on axis for which h/w was not specified<br>If prar=y and only one par (h or w) is specified, the picture will scale<br>along both axes until it is of the specified dimension.
|  colspan="4" | Only one of the h and w parameters needs to be specified.<br>If prar=n, no action will be taken on the axis for which h/w was not specified<br>If prar=y and only one par (h or w) is specified, the picture will scale<br>along both axes until it is of the specified dimension.
|-
|-
| ''int    '' || '''h=none''' ||  || output height
| ''int    '' || '''h=none''' ||  || output height
Line 3,081: Line 3,115:
|}
|}


A small usage example follow below. First, create an input file:
A small usage example follows below. First, create an input file:


<bash>
<syntaxhighlight lang="bash">
$ echo -e '5,6,8,9.2\n11,124,5,0,1' | tee file.csv
$ echo -e '5,6,8,9.2\n11,124,5,0,1' | tee file.csv
5,6,8,9.2
5,6,8,9.2
11,124,5,0,1
11,124,5,0,1
</bash>
</syntaxhighlight>


You may notice that the number of values in each row is different.
You may notice that the number of values in each row is different.


Run <tt>sfcsv2rsf</tt>. Notice that no options are needed. By default, zeros will be appended to make the rows equal length:
Run <tt>sfcsv2rsf</tt>. Notice that no options are needed. By default, zeros will be appended to make the rows equal in length:


<bash>
<syntaxhighlight lang="bash">
$ <file.csv sfcsv2rsf > junk.rsf ; sfdisfil < junk.rsf  
$ <file.csv sfcsv2rsf > junk.rsf ; sfdisfil < junk.rsf  
   0:            5            6            8          9.2            0
   0:            5            6            8          9.2            0
   5:            11          124            5            0            1
   5:            11          124            5            0            1
</bash>
</syntaxhighlight>


Notice that sfdisfil displays in column order (i.e. matrix is transposed if the number of rows is right). The dimensions of the file are actually transposed on disk:
Notice that sfdisfil displays in column order (i.e. matrix is transposed if the number of rows is right). The dimensions of the file are transposed on disk:


<syntaxhighlight lang="bash">
$ sfin junk.rsf
$ sfin junk.rsf
junk.rsf:
junk.rsf:
Line 3,108: Line 3,143:
     n2=2          d2=1          o2=0          unit2="unknown"  
     n2=2          d2=1          o2=0          unit2="unknown"  
10 elements 40 bytes
10 elements 40 bytes
</bash>
</syntaxhighlight>


You may want to run the output through <tt>sftransp</tt>, depending on your needs. However, if creating an input for <tt>sfmatmult</tt>, this will not be necessary, because <tt>sfmatmult</tt> is made to work with matrices that are displayed with <tt>sfdisfil</tt>, and takes as input a transpose matrix.
Depending on your needs, you may want to run the output through <tt>sftransp</tt>. However, if creating an input for <tt>sfmatmult</tt>, this will not be necessary, because <tt>sfmatmult</tt> is made to work with matrices that are displayed with <tt>sfdisfil</tt>, and takes as input a transpose matrix.


Pipes can be used, of course, to skip the creation of intermediary files:
Pipes can be used, of course, to skip the creation of intermediary files:


<bash>
<syntaxhighlight lang="bash">
$ <file.csv sfcsv2rsf | sfdisfil
$ <file.csv sfcsv2rsf | sfdisfil
   0:            5            6            8          9.2            0
   0:            5            6            8          9.2            0
   5:            11          124            5            0            1
   5:            11          124            5            0            1
</bash>
</syntaxhighlight>


Note that since this program does not need any arguments (just stdin and stdout), when called with no arguments it will not display the man page. In order to consult the automatically generated documentation, you need to pass the option <tt>help=y</tt> .
Note that since this program does not need any arguments (just stdin and stdout), it will not display the man page when called with no arguments. In order to consult the automatically generated documentation, you need to pass the option <tt>help=y</tt> .


=user/jennings programs=
=user/jennings programs=
Line 3,137: Line 3,172:




This program computes the "theoretical" size in bytes of the data fork of RSF files.  The actual space occupied on disk may be different and machine dependent due to disk blocking factors, etc.  This theoretical array size should be reproducible.  It is also fast because the program only reads the RSF headers files, not the actual data.
This program computes the "theoretical" size in bytes of the data fork of RSF files.  The actual space occupied on disk may be different and machine-dependent due to disk blocking factors, etc.  This theoretical array size should be reproducible.  It is also fast because the program only reads the RSF headers files, not the actual data.


For example, to get the total size of all RSF files in a directory, in human readable format, without listing each file:
For example, to get the total size of all RSF files in a directory, in human-readable format, without listing each file:
<pre>
<pre>
sfsizes files=n human=y *.rsf
sfsizes files=n human=y *.rsf
Line 3,186: Line 3,221:




This tool lists Vplot files in "Fig" and "Lock" directories and compares them using sfvplotdiff.
This tool lists Vplot files in the "Fig" and "Lock" directories and compares them using sfvplotdiff.


The Fig directory defaults to ./Fig and the Lock directory defaults to the   
The Fig directory defaults to ./Fig and the Lock directory defaults to the   
Line 3,200: Line 3,235:
if any of these environment variables are not defined.
if any of these environment variables are not defined.


The tool gives a summary count of files that are the same, files that
The tool gives a summary count of files that are the same, files that are different, files in Fig that are missing from Lock, and files in Lock that are missing from Fig.
are different, files in Fig that are missing from Lock, and files in
Lock that are missing from Fig.


The parameters '''list''' (default=all) and '''show''' (default=none) control which files are listed or "flipped" with sfpen.  The file listing indicates which files are the same, which are different, and which are missing from Fig or Lock.
The parameters '''list''' (default=all) and '''show''' (default=none) control which files are listed or "flipped" with sfpen.  The file listing indicates which files are the same, which are different, and which are missing from Fig or Lock.
Line 3,258: Line 3,291:
|}
|}


An example will be demonstrated below on a model with nx=nz=200, dx=dz=4m (size: 800x800m). There are two layers: the first one is 100x200 samples in (z,x) and the velocity is 1500m/s; the second layer has the same dimension and the velocity is 3000m/s. Density is set to 1 for the whole grid. A source and a receiver are co-located at x=400 and z=100. The full wavefield for the entire model aperture will be saved every 10th time step.
Below, we will demonstrate an example of a model with nx=nz=200 and dx=dz=4m (size: 800x800m). There are two layers: the first is 100x200 samples in (z,x), and the velocity is 1500m/s; the second layer has the same dimension, and the velocity is 3000m/s. The density is set to 1 for the whole grid. A source and a receiver are co-located at x=400 and z=100. The full wavefield for the entire model aperture will be saved every 10th time step.


<ol>
<ol>
Line 3,316: Line 3,349:
</li>
</li>


<li>View the data recorded at receiver:
<li>View the data recorded at the receiver:
<syntaxhighlight lang="bash">
<syntaxhighlight lang="bash">
< Fdat.rsf sfwindow |\
< Fdat.rsf sfwindow |\
Line 3,402: Line 3,435:
|}
|}


This program performs 3-D and 2-D shot-record (a.k.a. shot-profile) migration with an extended Split-Step Fourier (SSF) extrapolator with multiple reference velocities (hence "extended"). It takes as input a shot wavefield (<tt>stdin</tt>), receiver wavefield (<tt>rwf=</tt>) and slowness model (<tt>slo=</tt>). Outputs are an image (<tt>stdout</tt>) and a cube of Common Image Gathers (<tt>cig=</tt>). An important parameter is <tt>nrmax</tt>, the number of reference velocities. Its default value is 1, but for reasonable results it should be 5 or so. It is also good to specify nonzero taper values (<tt>tmx</tt> and, for 3-D, <tt>tmy</tt> as well). The values of padding parameters <tt>pmx</tt> and <tt>pmy</tt> are split in two by the program, i.e. if your data x axis is 501-points long, specify pmx=11 to get a value of 512 that will result in fast Fourier Transforms.  
This program performs 3-D and 2-D shot-record (a.k.a. shot-profile) migration with an extended Split-Step Fourier (SSF) extrapolator with multiple reference velocities (hence "extended"). It takes as input a shot wavefield (<tt>stdin</tt>), receiver wavefield (<tt>rwf=</tt>) and slowness model (<tt>slo=</tt>). Outputs are an image (<tt>stdout</tt>) and a cube of Common Image Gathers (<tt>cig=</tt>). An important parameter is <tt>nrmax</tt>, the number of reference velocities. Its default value is 1, but it should be 5 or so for reasonable results. It is also good to specify nonzero taper values (<tt>tmx</tt> and, for 3-D, <tt>tmy</tt> as well). The values of padding parameters <tt>pmx</tt> and <tt>pmy</tt> are split in two by the program, i.e., if your data x-axis is 501-points long, specify pmx=11 to get a value of 512 that will result in fast Fourier Transforms.  


The program will also migrate converted-wave data if a file with the S-wave slowness model (<tt>sls=</tt>) is provided.
The program will also migrate converted-wave data if a file with the S-wave slowness model (<tt>sls=</tt>) is provided.
Line 3,409: Line 3,442:


===Usage example===
===Usage example===
The commands below, slightly modified from [http://rsf.svn.sourceforge.net/viewvc/rsf/trunk/book/data/sigsbee/ptest/SConstruct?revision=3993&view=markup RSFSRC/book/data/sigsbee/ptest], show how to prepare the [http://www.reproducibility.org/RSF/book/data/sigsbee Sigsbee 2A] data and velocity for migration.
The commands below, slightly modified from [http://rsf.svn.sourceforge.net/viewvc/rsf/trunk/book/data/sigsbee/ptest/SConstruct?revision=3993&view=markup RSFSRC/book/data/sigsbee/ptest], show how to prepare the [https://ahay.org/RSF/book/data/sigsbee Sigsbee 2A] data and velocity for migration.


Convert input data (shots) from SEG-Y to RSF:
Convert input data (shots) from SEG-Y to RSF:
<bash>
<syntaxhighlight lang="bash">
sfsegyread tape=sigsbee2a_nfs.segy tfile=tdata.rsf hfile=/dev/null bfile=/dev/null > ddata.rsf
sfsegyread tape=sigsbee2a_nfs.segy tfile=tdata.rsf hfile=/dev/null bfile=/dev/null > ddata.rsf
</bash>
</syntaxhighlight>
Convert trace headers to float (required by <tt>sfheadermath</tt>):
Convert trace headers to float (required by <tt>sfheadermath</tt>):
<bash>
<syntaxhighlight lang="bash">
< tdata.rsf sfdd type=float > trchdr.rsf
< tdata.rsf sfdd type=float > trchdr.rsf
</bash>
</syntaxhighlight>
Shot positions:
Shot positions:
<bash>
<syntaxhighlight lang="bash">
< trchdr.rsf sfheadermath output="fldr + 10925/150" | sfwindow squeeze=y > tsi.rsf
< trchdr.rsf sfheadermath output="fldr + 10925/150" | sfwindow squeeze=y > tsi.rsf
</bash>
</syntaxhighlight>
Extract offset positions from the trace header files, eliminate length-1 axis, scale, create a header for binning (required by <tt>sfintbin</tt>):
Extract offset positions from the trace header files, eliminate length-1 axis, scale, and create a header for binning (required by <tt>sfintbin</tt>):
<bash>
<syntaxhighlight lang="bash">
< trchdr.rsf sfheadermath output="offset" |\
< trchdr.rsf sfheadermath output="offset" |\
sfwindow squeeze=y |\
sfwindow squeeze=y |\
Line 3,431: Line 3,464:
sftransp |\
sftransp |\
sfdd type=int > tos.rsf
sfdd type=int > tos.rsf
</bash>
</syntaxhighlight>
Binning and muting:
Binning and muting:
<bash>
<syntaxhighlight lang="bash">
< ddata.rsf sfintbin head=tos.rsf xkey=0 ykey=1 |\
< ddata.rsf sfintbin head=tos.rsf xkey=0 ykey=1 |\
sfput label1=Time unit1=s d2=0.075 o2=0.0 label2=hx d3=0.150 o3=10.925 label3=sx |\
sfput label1=Time unit1=s d2=0.075 o2=0.0 label2=hx d3=0.150 o3=10.925 label3=sx |\
sfmutter half=false t0=1.0 v0=6.0 |\
sfmutter half=false t0=1.0 v0=6.0 |\
sfput d2=0.02286 o2=0 unit2=km d3=0.04572 o3=3.32994 unit3=km > shots.rsf
sfput d2=0.02286 o2=0 unit2=km d3=0.04572 o3=3.32994 unit3=km > shots.rsf
</bash>
</syntaxhighlight>
Keeping only 20 shots so that this 1-node job will not take forever, FFT-ing, decimating frequency slices (same as shortening the time axis), and creating y and hy axes of length 1:
Keeping only 20 shots so that this 1-node job will not take forever, FFT-ing, decimating frequency slices (same as shortening the time axis), and creating y and hy axes of length 1:
<bash>
<syntaxhighlight lang="bash">
< shots.rsf sfwindow n3=20 f3=10 j3=20 |\
< shots.rsf sfwindow n3=20 f3=10 j3=20 |\
sffft1 |\
sffft1 |\
Line 3,446: Line 3,479:
sfspray axis=3 n=1 o=0 d=1 label=hy |\
sfspray axis=3 n=1 o=0 d=1 label=hy |\
sfspray axis=5 n=1 o=0 d=1 label=sy > rfft.rsf
sfspray axis=5 n=1 o=0 d=1 label=sy > rfft.rsf
</bash>
</syntaxhighlight>
The dimensions of the cube thus created are:
The dimensions of the cube thus created are:
<pre>
<pre>
Line 3,460: Line 3,493:
</pre>
</pre>
Create the source wavelet (limited to the same frequency band as the data) and Fourier transform it:
Create the source wavelet (limited to the same frequency band as the data) and Fourier transform it:
<bash>
<syntaxhighlight lang="bash">
sfspike k1=1 n1=1500 d1=0.008 |\
sfspike k1=1 n1=1500 d1=0.008 |\
sfbandpass flo=15 fhi=25 |\
sfbandpass flo=15 fhi=25 |\
Line 3,466: Line 3,499:
sfwindow n1=200 min1=1 j1=3 |\
sfwindow n1=200 min1=1 j1=3 |\
sfput label1=freq > sfft.rsf
sfput label1=freq > sfft.rsf
</bash>
</syntaxhighlight>
This creates a frequency-domain wavelet:
This creates a frequency-domain wavelet:
<pre>
<pre>
Line 3,476: Line 3,509:
         200 elements 1600 bytes
         200 elements 1600 bytes
</pre>
</pre>
Create "synched" source and receiver wavefields with <tt>srsyn</tt> from wavelet and data frequency slices. Basically both the receiver and shot frequency slices are "placed" at the right location and padded with zeros up to the dimension of the x axis specified below.
Create "synched" source and receiver wavefields with <tt>srsyn</tt> from wavelet and data frequency slices. The receiver and shot frequency slices are "placed" at the right location and padded with zeros up to the x-axis dimension specified below.
<bash>
<syntaxhighlight lang="bash">
< rfft.rsf sfsrsyn nx=1067 dx=0.02286 ox=3.05562 wav=sfft.rsf swf=swav.rsf > rwav.rsf
< rfft.rsf sfsrsyn nx=1067 dx=0.02286 ox=3.05562 wav=sfft.rsf swf=swav.rsf > rwav.rsf
</bash>
</syntaxhighlight>
This creates frequency slices ready for migration for both source and receiver, only axis 1 (frequency) must become axis 3, for both datasets:
This creates frequency slices ready for migration for both source and receiver, only axis 1 (frequency) must become axis 3, for both datasets:
<bash>
<syntaxhighlight lang="bash">
< swav.rsf sftransp plane=12 | sftransp plane=23 > stra.rsf
< swav.rsf sftransp plane=12 | sftransp plane=23 > stra.rsf
</bash>
</syntaxhighlight>
<bash>
<syntaxhighlight lang="bash">
< rwav.rsf sftransp plane=12 | sftransp plane=23 > rtra.rsf
< rwav.rsf sftransp plane=12 | sftransp plane=23 > rtra.rsf
</bash>
</syntaxhighlight>
This creates a surface receiver wavefield ready for input to migration. Axis 4 is shot number. The values of axis 4 are arbitrary because each shot has been padded with zeros so that it covers the entire velocity model. Therefore the aperture of the downward continuation for each shot will be as large as the survey.
This creates a surface receiver wavefield ready for input to migration. Axis 4 is the shot number. The values of axis 4 are arbitrary because each shot has been padded with zeros so that it covers the entire velocity model. Therefore, the aperture of the downward continuation for each shot will be as large as that of the whole survey.
<pre>
<pre>
sfin trail=n rtra.rsf
sfin trail=n rtra.rsf
Line 3,499: Line 3,532:
         4268000 elements 34144000 bytes
         4268000 elements 34144000 bytes
</pre>
</pre>
Convert the velocity model from SEG-Y to RSF, decimate, convert from feet to km, transpose, convert to slowness and insert an additional axis:
Convert the velocity model from SEG-Y to RSF, decimate, convert from feet to km, transpose, convert to slowness, and insert an additional axis:
<bash>
<syntaxhighlight lang="bash">
sfsegyread tape=sigsbee2a_migvel.sgy tfile=/dev/null hfile=/dev/null bfile=/dev/null |\
sfsegyread tape=sigsbee2a_migvel.sgy tfile=/dev/null hfile=/dev/null bfile=/dev/null |\
sfput o1=0 d1=0.00762 label1=z unit1=km o2=3.05562 d2=0.01143 label2=x unit2=km |\
sfput o1=0 d1=0.00762 label1=z unit1=km o2=3.05562 d2=0.01143 label2=x unit2=km |\
Line 3,509: Line 3,542:
sfspray axis=2 n=1 d=1 o=0 |\
sfspray axis=2 n=1 d=1 o=0 |\
sfput label2=y > slow.rsf
sfput label2=y > slow.rsf
</bash>
</syntaxhighlight>
This creates a slowness file ready for input to migration, with an x axis identical to the x axis of the wavefield files:
This creates a slowness file ready for input to migration, with an x-axis identical to the x-axis of the wavefield files:
<pre>
<pre>
$ sfin slow.rsf
$ sfin slow.rsf
Line 3,521: Line 3,554:
         321167 elements 1284668 bytes
         321167 elements 1284668 bytes
</pre>
</pre>
Finally, the migration command (for a 4-processor machine, hence the <tt>ompnth</tt> value). We choose not to compute any image gathers (<tt>itype=o</tt>), but due to the construction of the program we still have to explicitly assign the <tt>cig</tt> tag, or else a RSF file with the name of the tag and no rsf extension will be created:
Finally, the migration command (for a 4-processor machine, hence the <tt>ompnth</tt> value). We choose not to compute any image gathers (<tt>itype=o</tt>), but due to the construction of the program we still have to explicitly assign the <tt>cig</tt> tag, or else an RSF file with the name of the tag and no rsf extension will be created:
<bash>
<syntaxhighlight lang="bash">
< stra.rsf sfsrmig3 nrmax=20 dtmax=5e-05 eps=0.01 verb=y ompnth=4 \
< stra.rsf sfsrmig3 nrmax=20 dtmax=5e-05 eps=0.01 verb=y ompnth=4 \
tmx=16 rwf=rtra.rsf slo=slow.rsf itype=o cig=/dev/null > img.rsf
tmx=16 rwf=rtra.rsf slo=slow.rsf itype=o cig=/dev/null > img.rsf
</bash>
</syntaxhighlight>
The migration of 20 shots takes approximately 3 hours on a 4-processor machine (1 shot=9 minutes). Without the frequency slice decimation by a factor of 3 and the depth axis decimation by a factor of 4, it would have taken twelve times as much. The resulting image has a y axis of length 1:
The migration of 20 shots takes approximately three hours on a 4-processor machine (1 shot=9 minutes). Without the frequency slice decimation by a factor of 3 and the depth axis decimation by a factor of 4, it would have taken twelve times as much. The resulting image has a y-axis of length 1:
<pre>
<pre>
$ sfin img.rsf trail=n
$ sfin img.rsf trail=n
Line 3,538: Line 3,571:
</pre>
</pre>
To properly visualize the image, we need to eliminate the axis of length 1, then transpose the x and z axes to their natural position:
To properly visualize the image, we need to eliminate the axis of length 1, then transpose the x and z axes to their natural position:
<bash>
<syntaxhighlight lang="bash">
<img.rsf sfwindow squeeze=y | sftransp | sfgrey > img.vpl
<img.rsf sfwindow squeeze=y | sftransp | sfgrey > img.vpl
</bash>
</syntaxhighlight>


=References=
=References=
<references/>
<references/>

Latest revision as of 00:13, 19 November 2024

This page was created from the LaTeX source in book/rsf/rsf/prog.tex using latex2wiki

This guide introduces some of the most used Madagascar programs and illustrates their usage with examples.

Main programs[edit]

The source files for these programs can be found under system/main in the Madagascar distribution. The "main" programs perform general-purpose operations on RSF hypercubes regardless of the data dimensionality or physical dimensions.

sfadd[edit]

Add, multiply, or divide RSF datasets.
sfadd > out.rsf scale= add= sqrt= abs= log= exp= mode= [< file0.rsf] file1.rsf file2.rsf ...
The various operations, if selected, occur in the following order:

(1) Take absolute value, abs=
(2) Add a scalar, add=
(3) Take the natural logarithm, log=
(4) Take the square root, sqrt=
(5) Multiply by a scalar, scale=
(6) Compute the base-e exponential, exp=
(7) Add, multiply, or divide the data sets, mode=

sfadd operates on integer, float, or complex data, but all the input
and output files must be of the same data type.

An alternative to sfadd is sfmath, which is more versatile, but may be
less efficient.
bools abs= If true take absolute value [nin]
floats add= Scalar values to add to each dataset [nin]
bools exp= If true compute exponential [nin]
bools log= If true take logarithm [nin]
string mode= 'a' means add (default),
'p' or 'm' means multiply,
'd' means divide
floats scale= Scalar values to multiply each dataset with [nin]
bools sqrt= If true take square root [nin]

sfadd is useful for combining (adding, dividing, or multiplying) several datasets. What if you want to subtract two datasets? Easy. Use the scale parameter as follows:

bash$ sfadd data1.rsf data2.rsf scale=1,-1 > diff.rsf

or

bash$ sfadd < data1.rsf data2.rsf scale=1,-1 > diff.rsf

The same task can be accomplished with the more general sfmath program:

bash$ sfmath one=data1.rsf two=data2.rsf output='one-two' > diff.rsf

or

bash$ sfmath < data1.rsf two=data2.rsf output='input-two' > diff.rsf

In both cases, the size and shape of data1.rsf and data2.rsf hypercubes should be the same, and a warning message is printed out if the axis sampling parameters (such as o1 or d1) in these files are different.

Implementation: system/main/add.c[edit]

The first input file is either in the list or in the standard input.

    /* find number of input files */
    if (isatty(fileno(stdin))) { 
        /* no input file in stdin */
	nin=0;
    } else {
        filename[0] = "in";
	nin=1;
    }

Collect input files in the in array from all command-line parameters that don't contain an "=" sign. The total number of input files is nin.

    for (i=1; i< argc; i++) { /* collect inputs */
	if (NULL != strchr(argv[i],'=')) continue; /* not a file */
	filename[nin] = argv[i];
	nin++;
    }
    if (0==nin) sf_error ("no input");
    /* nin = no of input files*/

A helper function check_compat checks the compatibility of input files.

static void 
check_compat (sf_datatype type /* data type */, 
	      size_t      nin  /* number of files */, 
	      sf_file*    in   /* input files [nin] */, 
	      int         dim  /* file dimensionality */, 
	      const int*  n    /* dimensions [dim] */)
/* Check that the input files are compatible. 
   Issue error for type mismatch or size mismatch.
   Issue warning for grid parameters mismatch. */
{
    int ni, id;
    size_t i;
    float d, di, o, oi;
    char key[3];
    const float tol=1.e-5; /* tolerance for comparison */
    
    for (i=1; i < nin; i++) {
	if (sf_gettype(in[i]) != type) 
	    sf_error ("type mismatch: need %d",type);
	for (id=1; id <= dim; id++) {
	    (void) snprintf(key,3,"n%d",id);
	    if (!sf_histint(in[i],key,&ni) || ni != n[id-1])
		sf_error("%s mismatch: need %d",key,n[id-1]);
	    (void) snprintf(key,3,"d%d",id);
	    if (sf_histfloat(in[0],key,&d)) {
		if (!sf_histfloat(in[i],key,&di) || 
		    (fabsf(di-d) > tol*fabsf(d)))
		    sf_warning("%s mismatch: need %g",key,d);
	    } else {
		d = 1.;
	    }
	    (void) snprintf(key,3,"o%d",id);
	    if (sf_histfloat(in[0],key,&o) && 
		(!sf_histfloat(in[i],key,&oi) || 
		 (fabsf(oi-o) > tol*fabsf(d))))
		sf_warning("%s mismatch: need %g",key,o);
	}
    }
}

Finally, we enter the main loop, where the input data are getting read buffer by buffer and combined in the total product depending on the data type.

    for (nbuf /= sf_esize(in[0]); nsiz > 0; nsiz -= nbuf) {
	if (nbuf > nsiz) nbuf=nsiz;

	for (j=0; j < nin; j++) {
	    collect = (bool) (j != 0);
	    switch(type) {
		case SF_FLOAT:
		    sf_floatread((float*) bufi,
				 nbuf,
				 in[j]);	    
		    add_float(collect, 
			      nbuf,
			      (float*) buf,
			      (const float*) bufi, 
			      cmode, 
			      scale[j], 
			      add[j], 
			      abs_flag[j], 
			      log_flag[j], 
			      sqrt_flag[j], 
			      exp_flag[j]);
		    break;

The data combination program for floating point numbers is add_float.

static void add_float (bool   collect,    /* if collect */
		       size_t nbuf,       /* buffer size */
		       float* buf,        /* output [nbuf] */
		       const float* bufi, /* input  [nbuf] */  
		       char   cmode,      /* operation */
		       float  scale,      /* scale factor */
		       float  add,        /* add factor */
		       bool   abs_flag,   /* if abs */
		       bool   log_flag,   /* if log */
		       bool   sqrt_flag,  /* if sqrt */
		       bool   exp_flag    /* if exp */)
/* Add floating point numbers */
{
    size_t j;
    float f;

    for (j=0; j < nbuf; j++) {
	f = bufi[j];
	if (abs_flag)    f = fabsf(f);
	f += add;
	if (log_flag)    f = logf(f);
	if (sqrt_flag)   f = sqrtf(f);
	if (1. != scale) f *= scale;
	if (exp_flag)    f = expf(f);
	if (collect) {
	    switch (cmode) {
		case 'p': /* product */
		case 'm': /* multiply */
		    buf[j] *= f;
		    break;
		case 'd': /* delete */
		    if (f != 0.) buf[j] /= f;
		    break;
		default:  /* add */
		    buf[j] += f;
		    break;
	    }
	} else {
	    buf[j] = f;
	}
    }
}

sfattr[edit]

Display dataset attributes.
sfattr < in.rsf lval=2 want=

Sample output from "sfspike n1=100 | sfbandpass fhi=60 | sfattr"
*******************************************
rms = 0.992354
mean = 0.987576
2-norm = 9.92354
variance = 0.00955481
std dev = 0.0977487
max = 1.12735 at 97
min = 0.151392 at 100
nonzero samples = 100
total samples = 100
*******************************************

rms = sqrt[ sum(data^2) / n ]
mean = sum(data) / n
norm = sum(abs(data)^lval)^(1/lval)
variance = [ sum(data^2) - n*mean^2 ] / [ n-1 ]
standard deviation = sqrt [ variance ]
int lval=2 norm option, lval is a non-negative integer, computes the vector lval-norm
string want= 'all'(default), 'rms', 'mean', 'norm', 'var',
'std', 'max', 'min', 'nonzero', 'samples', 'short'
want= 'rms' displays the root mean square
want= 'norm' displays the square norm, otherwise specified by lval.
want= 'var' displays the variance
want= 'std' displays the standard deviation
want= 'nonzero' displays number of nonzero samples
want= 'samples' displays total number of samples
want= 'short' displays a short one-line version


sfattr is a useful diagnostic program. It reports certain statistical values for an RSF dataset: RMS (root-mean-square) amplitude, mean value, vector norm value, variance, standard deviation, maximum and minimum values, number of nonzero samples, and the total number of samples. If we denote data values as for , then the RMS value is , the mean value is , the -norm value is , the variance is , and the standard deviation is the square root of the variance. Using sfattr is a quick way to see the distribution of data values and check it for anomalies.

The output can be parsed using utilities such as awk, to extract only a numeric value for feeding it as a parameter value into a command line interface. Notice the backticks in the example below:

sfgrey <vel.rsf allpos=y bias=`sfattr <vel.rsf want=min | awk '{print $4}'` | sfpen

Implementation: system/main/attr.c[edit]

Computations start by finding the input data (in) size (nsiz) and dimensions (dim).

    dim = (size_t) sf_largefiledims (in,n);
    for (nsiz=1, i=0; i < dim; i++) {
	nsiz *= n[i];
    }


In the main loop, we read the input data buffer by buffer.

    for (nleft=nsiz; nleft > 0; nleft -= nbuf) {
	nbuf = (bufsiz < nleft)? bufsiz: nleft;
	switch (type) {
	    case SF_FLOAT: 
		sf_floatread((float*) buf,nbuf,in);
		break;
	    case SF_INT:
		sf_intread((int*) buf,nbuf,in);
		break;
            case SF_SHORT:
                sf_shortread((short*) buf,nbuf,in);
		break;
	    case SF_COMPLEX:
		sf_complexread((sf_complex*) buf,nbuf,in);
		break;
	    case SF_UCHAR:
		sf_ucharread((unsigned char*) buf,nbuf,in);
		break;
	    case SF_CHAR:
	    default:
		sf_charread(buf,nbuf,in);
		break;
	}


The data attributes are accumulated in corresponding double-precision variables.

	    fsum += f;
	    fsqr += (double) f*f;


Finally, the attributes are reduced and printed out.

    fmean = fsum/nsiz;
    if (lval==2)      fnorm = sqrt(fsqr);
    else if (lval==0) fnorm = nsiz-nzero;
    else              fnorm = pow(flval,1./lval);
    frms = sqrt(fsqr/nsiz);
    if (nsiz > 1) fvar = fabs(fsqr-nsiz*fmean*fmean)/(nsiz-1);
    else          fvar = 0.0;
    fstd = sqrt(fvar);
    if(NULL==want || 0==strcmp(want,"rms"))
	printf("rms = %13.6g \n",(float) frms);
    if(NULL==want || 0==strcmp(want,"mean"))
	printf("mean = %13.6g \n",(float) fmean);
    if(NULL==want || 0==strcmp(want,"norm"))
	printf("%d-norm value = %13.6g \n",lval,(float) fnorm);
    if(NULL==want || 0==strcmp(want,"var"))
	printf("variance = %13.6g \n",(float) fvar);
    if(NULL==want || 0==strcmp(want,"std"))
	printf("standard deviation = %13.6g \n",(float) fstd);

sfcat[edit]

Concatenate datasets.
sfcat > out.rsf order= space= axis=3 nspace=(int) (ni/(20*nin) + 1) o= d= [<file0.rsf] file1.rsf file2.rsf ...
sfmerge inserts additional space between merged data.
int axis=3 Axis being merged
float d= axis sampling
int nspace=(int) (ni/(20*nin) + 1) if space=y, number of traces to insert
float o= axis origin
ints order= concatenation order [nin]
bool space= [y/n] Insert additional space.
y is default for sfmerge, n is default for sfcat

sfcat and sfmerge concatenate two or more files together along a particular axis. It is the same program, only sfcat has the default space=n and sfmerge has the default space=y. Example of sfcat:

bash$ sfspike n1=2 n2=3 > one.rsf
bash$ sfin one.rsf
one.rsf:
    in="/tmp/one.rsf@"
    esize=4 type=float form=native
    n1=2           d1=0.004       o1=0          label1="Time" unit1="s"
    n2=3           d2=0.1         o2=0          label2="Distance" unit2="km"
        6 elements 24 bytes
bash$ sfcat one.rsf one.rsf axis=1 > two.rsf
bash$ sfin two.rsf
two.rsf:
    in="/tmp/two.rsf@"
    esize=4 type=float form=native
    n1=4           d1=0.004       o1=0          label1="Time" unit1="s"
    n2=3           d2=0.1         o2=0          label2="Distance" unit2="km"
        12 elements 48 bytes

Example of sfmerge:

bash$ sfmerge one.rsf one.rsf axis=2 > two.rsf
bash$ sfin two.rsf
two.rsf:
    in="/tmp/two.rsf@"
    esize=4 type=float form=native
    n1=2           d1=0.004       o1=0          label1="Time" unit1="s"
    n2=7           d2=0.1         o2=0          label2="Distance" unit2="km"
        14 elements 56 bytes

In this case, an extra empty trace is inserted between the two merged files. The axes that are not being merged are checked for consistency:

bash$ sfcat one.rsf two.rsf > three.rsf
sfcat: n2 mismatch: need 3

Implementation: system/main/cat.c[edit]

The first input file is either in the list or in the standard input.

    in = (sf_file*) sf_alloc ((size_t) argc,sizeof(sf_file));

    if (!sf_stdin()) { /* no input file in stdin */
	nin=0;
    } else {
	filename[0] = "in";
	nin=1;
    }

Everything on the command line that does not contain a "=" sign is treated as a file name, and the corresponding file object is added to the list.

    for (i=1; i< argc; i++) { /* collect inputs */
	if (NULL != strchr(argv[i],'=')) 
	    continue; /* not a file */
	filename[nin] = argv[i];
	nin++;
    }
    if (0==nin) sf_error ("no input");

As explained above, if the space= parameter is not set, it is inferred from the program name: sfmerge corresponds to space=y and sfcat corresponds to space=n.

    if (!sf_getbool("space",&space)) {
	/* Insert additional space.
	   y is default for sfmerge, n is default for sfcat */
	prog = sf_getprog();
	if (NULL != strstr (prog, "merge")) {
	    space = true;
	} else if (NULL != strstr (prog, "cat")) {
	    space = false;
	} else {
	    sf_warning("%s is neither merge nor cat,"
		       " assume merge",prog);
	    space = true;
	}
    }

Find the axis for the merging (from the command line axis= argument) and figure out two sizes: n1 for everything after the axis and n2 for everything before the axis.

    n1=1;
    n2=1;
    for (i=1; i <= dim; i++) {
	if      (i < axis) n1 *= n[i-1];
	else if (i > axis) n2 *= n[i-1];
    }

In the output, the selected axis will get extended.

    /* figure out the length of extended axis */
    ni = 0;
    for (j=0; j < nin; j++) {
	ni += naxis[j];
    }

    if (space) {
	if (!sf_getint("nspace",&nspace)) 
	    nspace = (int) (ni/(20*nin) + 1);
	/* if space=y, number of traces to insert */ 
	ni += nspace*(nin-1);
    } 

    (void) snprintf(key,3,"n%d",axis);
    sf_putint(out,key,(int) ni);

The rest is simple: loop through the datasets reading and writing the data in buffer-size chunks and adding extra empty chunks if space=y.

    for (i2=0; i2 < n2; i2++) {
	for (j=0; j < nin; j++) {
	    for (ni = n1*naxis[j]*esize; ni > 0; ni -= nbuf) {
		nbuf = (BUFSIZ < ni)? BUFSIZ: ni;
		sf_charread (buf,nbuf,in[j]);
		sf_charwrite (buf,nbuf,out);
	    }
	    if (!space || j == nin-1) continue;
	    /* Add spaces */
	    memset(buf,0,BUFSIZ);
	    for (ni = n1*nspace*esize; ni > 0; ni -= nbuf) {
		nbuf = (BUFSIZ < ni)? BUFSIZ: ni;
		sf_charwrite (buf,nbuf,out);
	    }
	}
    }

sfcdottest[edit]

Generic dot-product test for complex linear operators with adjoints
sfcdottest mod=mod.rsf dat=dat.rsf > pip.rsf
file dat= auxiliary input file name
file mod= auxiliary input file name

A simple demonstration of the program can be made by taking advantage that the complex-to-complex FFT is a linear operator:

sfspike n1=100 | sfrtoc > spike.rsf
< spike.rsf sffft axis=1 pad=1 > spike2.rsf
sfcdottest sffft mod=spike.rsf dat=spike2.rsf axis=1 pad=1

The output should show values identical down to the last decimal:

sfcdottest:  L[m]*d=(3.73955,-1.86955)
sfcdottest: L'[d]*m=(3.73955,-1.86955)

sfcmplx[edit]

Create a complex dataset from its real and imaginary parts.
sfcmplx < real.rsf > cmplx.rsf real.rsf imag.rsf
There has to be only two input files specified and no additional parameters.


sfcmplx simply creates a complex dataset from its real and imaginary parts. The reverse operation can be accomplished with sfreal and sfimag. Example of sfcmplx:

bash$ sfspike n1=2 n2=3 > one.rsf
bash$ sfin one.rsf
one.rsf:
    in="/tmp/one.rsf@"
    esize=4 type=float form=native
    n1=2           d1=0.004       o1=0          label1="Time" unit1="s"
    n2=3           d2=0.1         o2=0          label2="Distance" unit2="km"
        6 elements 24 bytes
bash$ sfcmplx one.rsf one.rsf > cmplx.rsf
bash$ sfin cmplx.rsf
cmplx.rsf:
    in="/tmp/cmplx.rsf@"
    esize=8 type=complex form=native
    n1=2           d1=0.004       o1=0          label1="Time" unit1="s"
    n2=3           d2=0.1         o2=0          label2="Distance" unit2="km"
        6 elements 48 bytes

Implementation: system/main/cmplx.c[edit]

The program flow is simple. First, get the names of the input files.

    /* the first two non-parameters are real and imag files */
    for (i=1; i< argc; i++) { 
	if (NULL == strchr(argv[i],'=')) {
	    if (NULL == real) {
		real = sf_input (argv[i]);
	    } else {
		imag = sf_input (argv[i]);
		break;
	    }
	}
    }
    if (NULL == imag) {
	if (NULL == real) sf_error ("not enough input");
	/* if only one input, real is in stdin */
	imag = real;
	real = sf_input("in");
    }

The main part of the program reads the real and imaginary parts buffer by buffer and assembles and writes out the complex input.

    for (nleft= (size_t) (rsize*resize); nleft > 0; nleft -= nbuf) {
	nbuf = (BUFSIZ < nleft)? BUFSIZ: nleft;
	sf_charread(rbuf,nbuf,real);
	sf_charread(ibuf,nbuf,imag);
	for (i=0; i < nbuf; i += resize) {
	    memcpy(cbuf+2*i,       rbuf+i,(size_t) resize);
	    memcpy(cbuf+2*i+resize,ibuf+i,(size_t) resize);
	}
	sf_charwrite(cbuf,2*nbuf,cmplx);
    }

sfconjgrad[edit]

Generic conjugate-gradient solver for linear inversion
sfconjgrad < dat.rsf mod=mod.rsf mwt=mwt.rsf known=known.rsf x0=x0.rsf > to.rsf < from.rsf > out.rsf niter=1
string known= auxiliary input file name
file mod= auxiliary input file name
string mwt= auxiliary input file name
int niter=1 number of iterations
string x0= auxiliary input file name

sfconjgrad is a generic program for least-squares linear inversion with the conjugate-gradient method. Suppose you have an executable program <prog> that takes an RSF file from the standard input and produces an RSF file in the standard output. It may take any number of additional parameters but one of them must be adj= that sets the forward (adj=0) or adjoint (adj=1) operations. The program <prog> is typically an RSF program but it could be anything (a script, a multiprocessor MPI program, etc.) as long as it implements a linear operator and its adjoint. There are no restrictions on the data size or shape. You can easily test the adjointness with sfdottest. The sfconjgrad program searches for a vector that minimizes the least-square misfit for the given input data vector .

The pseudocode for sfconjgrad is given at the end of the "Model fitting with least squares" chapter of Imaging Estimation by Example by Jon Claerbout, with the earliest form published in "Conjugate Gradient Tutorial" (SEP-48, 1986, same author). A simple toy implementation with a small matrix shows that this algorithm produces the same steps as the algorithm described in equations 45-49 of "An introduction to the Conjugate Gradient Method Without the Agonizing Pain" by J.R. Shewchuk, 1994, when the equation (in Shewchuk's notation) is solved. Multiplying with the transpose ensures a correct solution even when matrix A is square but not symmetric at all. The program sfcconjgrad implements this algorithm for the case when inputs are complex.

Here is an example. The sfhelicon program implements Claerbout's multidimensional helical filtering (Claerbout, 1998[1]). It requires a filter to be specified in addition to the input and output vectors. We create a helical 2-D filter using the Unix echo command.

bash$ echo 1 19 20 n1=3 n=20,20 data_format=ascii_int in=lag.rsf > lag.rsf
bash$ echo 1 1 1 a0=-3 n1=3 data_format=ascii_float in=flt.rsf > flt.rsf

Next, we create an example 2-D model and data vector with sfspike.

bash$ sfspike n1=50 n2=50 > vec.rsf

The sfdottest program can perform the dot product test to check that the adjoint mode works correctly.

bash$ sfdottest sfhelicon filt=flt.rsf lag=lag.rsf mod=vec.rsf dat=vec.rsf
sfdottest:  L[m]*d=5.28394
sfdottest: L'[d]*m=5.28394

Your numbers may be different because sfdottest generates new random input on each run. Next, let us make some random data with sfnoise.

bash$ sfnoise seed=2005 rep=y < vec.rsf > dat.rsf

and try to invert the filtering operation using sfconjgrad:

bash$ sfconjgrad sfhelicon filt=flt.rsf lag=lag.rsf mod=vec.rsf < dat.rsf > mod.rsf niter=10
sfconjgrad: iter 1 of 10
sfconjgrad: grad=3253.65
sfconjgrad: iter 2 of 10
sfconjgrad: grad=289.421
sfconjgrad: iter 3 of 10
sfconjgrad: grad=92.3481
sfconjgrad: iter 4 of 10
sfconjgrad: grad=36.9417
sfconjgrad: iter 5 of 10
sfconjgrad: grad=18.7228
sfconjgrad: iter 6 of 10
sfconjgrad: grad=11.1794
sfconjgrad: iter 7 of 10
sfconjgrad: grad=7.26941
sfconjgrad: iter 8 of 10
sfconjgrad: grad=5.15945
sfconjgrad: iter 9 of 10
sfconjgrad: grad=4.23055
sfconjgrad: iter 10 of 10
sfconjgrad: grad=3.57495

The output shows that, in 10 iterations, the norm of the gradient vector decreases by almost 1000. We can check the residual misfit before

bash$ < dat.rsf sfattr want=norm
norm value = 49.7801

and after

bash$ sfhelicon filt=flt.rsf lag=lag.rsf < mod.rsf | sfadd scale=1,-1 dat.rsf | sfattr want=norm
norm value = 5.73563

The misfit decreased by an order of magnitude in 10 iterations. Running the program for more iterations can improve the result.

An equivalent implementation for complex-valued inputs is sfcconjgrad. A lightweight Python implementation can be found in $PYTHONPATH/rsf/conjgrad.py.

sfcp[edit]

Copy or move a dataset.
sfcp < in.rsf > out.rsf in.rsf out.rsf
sfcp - copy, sfmv - move.
Mimics standard Unix commands.


The sfcp and sfmv command imitate the Unix cp and mv commands and serve for copying and moving RSF files. Example:

bash$ sfspike n1=2 n2=3 > one.rsf
bash$ sfin one.rsf
one.rsf:
    in="/tmp/one.rsf@"
    esize=4 type=float form=native
    n1=2           d1=0.004       o1=0          label1="Time" unit1="s"
    n2=3           d2=0.1         o2=0          label2="Distance" unit2="km"
        6 elements 24 bytes
bash$ sfcp one.rsf two.rsf
bash$ sfin two.rsf
two.rsf:
    in="/tmp/two.rsf@"
    esize=4 type=float form=native
    n1=2           d1=0.004       o1=0          label1="Time" unit1="s"
    n2=3           d2=0.1         o2=0          label2="Distance" unit2="km"
        6 elements 24 bytes

Implementation: system/main/cp.c[edit]

First, we look for the two first command-line arguments that don't have the "=" character in them and consider them as the names of the input and the output files.

    /* the first two non-parameters are in and out files */
    for (i=1; i< argc; i++) { 
	if (NULL == strchr(argv[i],'=')) {
	    if (NULL == in) {
		infile = argv[i];
		in = sf_input (infile);
	    } else {
		out = sf_output (argv[i]);
		break;
	    }
	}
    }
    if (NULL == in || NULL == out)
	sf_error ("not enough input");

Next, we use library functions sf_cp and sf_rm to do the actual work.

    sf_cp(in,out);
    if (NULL != strstr (prog,"mv")) 
	sf_rm(infile,false,false,false);

sfcut[edit]

Zero a portion of the dataset.
sfcut < in.rsf > out.rsf verb=n j#=(1,...) d#=(d1,d2,...) f#=(0,...) min#=(o1,o2,,...) n#=(0,...) max#=(o1+(n1-1)*d1,o2+(n1-1)*d2,,...)

Reverse of window.
float d#=(d1,d2,...) sampling in #-th dimension
largeint f#=(0,...) window start in #-th dimension
int j#=(1,...) jump in #-th dimension
float max#=(o1+(n1-1)*d1,o2+(n1-1)*d2,,...) maximum in #-th dimension
float min#=(o1,o2,,...) minimum in #-th dimension
int n#=(0,...) window size in #-th dimension
bool verb=n [y/n] Verbosity flag

The sfcut command is related to sfwindow and has the same set of arguments, only instead of extracting the selected window, it fills it with zeroes. The size of the input data is preserved. Examples:

bash$ sfspike n1=5 n2=5 > in.rsf
bash$ < in.rsf sfdisfil
   0:             1            1            1            1            1
   5:             1            1            1            1            1
  10:             1            1            1            1            1
  15:             1            1            1            1            1
  20:             1            1            1            1            1
bash$ < in.rsf sfcut n1=2 f1=1 n2=3 f2=2 | sfdisfil
   0:             1            1            1            1            1
   5:             1            1            1            1            1
  10:             1            0            0            1            1
  15:             1            0            0            1            1
  20:             1            0            0            1            1
bash$ < in.rsf sfcut j1=2 | sfdisfil
   0:             0            1            0            1            0
   5:             0            1            0            1            0
  10:             0            1            0            1            0
  15:             0            1            0            1            0
  20:             0            1            0            1            0

sfdd[edit]

Convert between different formats.
sfdd < in.rsf > out.rsf trunc=n line=8 ibm=n form= type= format=
string form= ascii, native, xdr
string format= Element format (for conversion to ASCII)
bool ibm=n [y/n] Special case - assume integers actually represent IBM floats
int line=8 Number of numbers per line (for conversion to ASCII)
bool trunc=n [y/n] Truncate or round to nearest when converting from float to int/short
string type= int, float, complex, short, long


The sfdd program is used to change either the form (ascii, xdr, native) or the type (complex, float, int, char) of the input dataset. In the example below, we create a plain text (ASCII) file with numbers and then use sfdd to generate an RSF file in xdr form with complex numbers.

bash$ cat test.txt
1 2 3 4 5 6
bash$ echo n1=6 data_format=ascii_int in=test.txt > test.rsf
bash$ sfin test.rsf
test.rsf:
    in="test.txt"
    esize=0 type=int form=ascii
    n1=6           d1=?           o1=?
        6 elements
bash$ sfdd < test.rsf form=xdr type=complex > test2.rsf
bash$ sfin test2.rsf
test2.rsf:
    in="/tmp/test2.rsf@"
    esize=8 type=complex form=xdr
    n1=3           d1=?           o1=?
        3 elements 24 bytes
bash$ sfdisfil < test2.rsf
   0:          1,         2i         3,         4i         5,         6i

To learn more about the RSF data format, consult the guide to RSF format.

sfdisfil[edit]

Print out data values.
sfdisfil < in.rsf number=y col=0 format= header= trailer=

Alternatively, use sfdd and convert to ASCII form.
int col=0 Number of columns.
The default depends on the data type:
10 for int and char,
5 for float,
3 for complex
string format= Format for numbers (printf-style).
The default depends on the data type:
"%4d " for int and char,
"%13.4g" for float,
"%10.4g,%10.4gi" for complex
string header= Optional header string to output before data
bool number=y [y/n] If number the elements
string trailer= Optional trailer string to output after data


The sfdisfil program simply dumps the data contents to the standard output in a text form. It is used mostly for debugging purposes to examine RSF files quickly. Here is an example:

bash$ sfmath o1=0 d1=2 n1=12 output=x1 > test.rsf
bash$ < test.rsf sfdisfil
   0:             0            2            4            6            8
   5:            10           12           14           16           18
  10:            20           22

The output format is easily configurable.

bash$ < test.rsf sfdisfil col=6 number=n format="%5.1f"
  0.0  2.0  4.0  6.0  8.0 10.0
 12.0 14.0 16.0 18.0 20.0 22.0

Along with sfdd, sfdisfil provides a simple way to convert RSF data to an ASCII form.

sfdottest[edit]

Generic dot-product test for linear operators with adjoints
sfdottest mod=mod.rsf dat=dat.rsf > pip.rsf
file dat= auxiliary input file name
file mod= auxiliary input file name

sfdottest is a generic dot-product test program for testing linear operators. Suppose there is an executable program <prog> that takes an RSF file from the standard input and produces an RSF file in the standard output. It may take any number of additional parameters but one of them must be adj= that sets the forward (adj=0) or adjoint (adj=1) operations. The program <prog> is typically an RSF program but it could be anything (a script, a multiprocessor MPI program, etc.) as long as it implements a linear operator and its adjoint . The sfdottest program is testing the equality

by using random vectors and . You can invoke it with

bash$ sfdottest <prog> [optional aruments] mod=mod.rsf dat=dat.rsf

where mod.rsf and dat.rsf are RSF files that represent vectors from the model and data spaces. Pay attention to the dimensions and size of these vectors! If the program does not respond for a very long time, the dimension and size of the vectors may be inconsistent with the requirement of the program to be tested. sfdottest does not create any temporary files and has no restrictive limitations on the size of the vectors. Here is an example. We first create a vector with 100 elements using sfspike and then run sfdottest to test the sfcausint program. sfcausint implements a linear operator of causal integration and its adjoint, the anti-causal integration.

bash$ sfspike n1=100 > vec.rsf
bash$ sfdottest sfcausint mod=vec.rsf dat=vec.rsf
sfdottest:  L[m]*d=1410.2
sfdottest: L'[d]*m=1410.2
bash$ sfdottest sfcausint mod=vec.rsf dat=vec.rsf
sfdottest:  L[m]*d=1165.87
sfdottest: L'[d]*m=1165.87

The numbers are different on subsequent runs because of changing seed in the random number generator. Here is a somewhat more complicated example. The sfhelicon program implements Claerbout's multidimensional helical filtering (Claerbout, 1998[2]). It requires a filter to be specified in addition to the input and output vectors. We create a helical 2-D filter using the Unix echo command.

bash$ echo 1 19 20 n1=3 n=20,20 data_format=ascii_int in=lag.rsf > lag.rsf
bash$ echo 1 1 1 a0=-3 n1=3 data_format=ascii_float in=flt.rsf > flt.rsf

Next, we create an example 2-D model and data vector with sfspike.

bash$ sfspike n1=50 n2=50 > vec.rsf

Now the sfdottest program can perform the dot product test.

bash$ sfdottest sfhelicon filt=flt.rsf lag=lag.rsf \
> mod=vec.rsf dat=vec.rsf
sfdottest:  L[m]*d=8.97375
sfdottest: L'[d]*m=8.97375

Here is the same program tested in the inverse filtering mode:

bash$ sfdottest sfhelicon filt=flt.rsf lag=lag.rsf \
> mod=vec.rsf dat=vec.rsf div=y
sfdottest:  L[m]*d=15.0222
sfdottest: L'[d]*m=15.0222

sfget[edit]

Output parameters from the header.
sfget parform=y all=n par1 par2 ...
bool all=n [y/n] If output all values.
bool parform=y [y/n] If y, print out parameter=value. If n, print out value.

The sfget program extracts a parameter value from an RSF file. It is useful mostly for scripting. Here is, for example, a quick calculation of the maximum value on the first axis in an RSF dataset (the output of sfspike) using the standard Unix bc calculator.

bash$ ( sfspike n1=100 | sfget n1 d1 o1; echo "o1+(n1-1)*d1" ) | bc
.396

See also sfput.

Implementation: system/main/get.c[edit]

The implementation is trivial. Loop through all command-line parameters that contain the "=" character.

    for (i = 1; i < argc; i++) {
	key = argv[i];
	if (NULL != strchr(key,'=')) continue;

Get the parameter value (as a string) and output it as either key=value or value, depending on the parform parameter.

	string = sf_histstring(in,key);
	if (NULL == string) {
	    sf_warning("No key %s",key);
	} else {
	    if (parform) printf ("%s=",key);
	    printf("%s\n",string);
	}

sfheadercut[edit]

Zero a portion of a dataset based on a header mask.
sfheadercut mask=head.rsf < in.rsf > out.rsf

The input data is a collection of traces n1xn2,
mask is an integer array of size n2.
file mask= auxiliary input file name

sfheadercut is close to sfheaderwindow but instead of windowing the dataset, it fills the traces specified by the header mask with zeroes. The size of the input data is preserved. Here is an example of using sfheaderwindow for zeroing every other trace in the input file. First, let us create an input file with ten traces:

bash$ sfmath n1=5 n2=10 output=x2+1 > input.rsf
bash$ < input.rsf sfdisfil
   0:             1            1            1            1            1
   5:             2            2            2            2            2
  10:             3            3            3            3            3
  15:             4            4            4            4            4
  20:             5            5            5            5            5
  25:             6            6            6            6            6
  30:             7            7            7            7            7
  35:             8            8            8            8            8
  40:             9            9            9            9            9
  45:            10           10           10           10           10

Next, we can create a mask with alternating ones and zeros using sfinterleave.

bash$ sfspike n1=5 mag=1 | sfdd type=int > ones.rsf
bash$ sfspike n1=5 mag=0 | sfdd type=int > zeros.rsf
bash$ sfinterleave axis=1 ones.rsf zeros.rsf > mask.rsf
bash$ sfdisfil < mask.rsf
   0:    1    0    1    0    1    0    1    0    1    0

Finally, sfheadercut zeros the input traces.

bash$ sfheadercut < input.rsf mask=mask.rsf > output.rsf
bash$ sfdisfil < output.rsf 
   0:             1            1            1            1            1
   5:             0            0            0            0            0
  10:             3            3            3            3            3
  15:             0            0            0            0            0
  20:             5            5            5            5            5
  25:             0            0            0            0            0
  30:             7            7            7            7            7
  35:             0            0            0            0            0
  40:             9            9            9            9            9
  45:             0            0            0            0            0

sfheadersort[edit]

Sort a dataset according to a header key.
sfheadersort < in.rsf > out.rsf head=
string head= header file


sfheadersort is used to sort traces in the input file according to trace header information. Here is an example of using sfheadersort for randomly shuffling traces in the input file. First, let us create an input file with seven traces:

bash$ sfmath n1=5 n2=7 output=x2+1 > input.rsf
bash$ < input.rsf sfdisfil
   0:             1            1            1            1            1
   5:             2            2            2            2            2
  10:             3            3            3            3            3
  15:             4            4            4            4            4
  20:             5            5            5            5            5
  25:             6            6            6            6            6
  30:             7            7            7            7            7 

Next, we can create a random file with seven header values using sfnoise.

bash$ sfspike n1=7 | sfnoise rep=y type=n > random.rsf
bash$ < random.rsf sfdisfil
   0:       0.05256      -0.2879       0.1487       0.4097       0.1548
   5:        0.4501       0.2836

If you reproduce this example, your numbers will most likely be different, because, in the absence of seed= parameter, sfnoise uses a random seed value to generate pseudo-random numbers. Finally, we apply sfheadersort to shuffle the input traces.

bash$ < input.rsf sfheadersort head=random.rsf > output.rsf
bash$ < output.rsf sfdisfil
   0:             2            2            2            2            2
   5:             1            1            1            1            1
  10:             3            3            3            3            3
  15:             5            5            5            5            5
  20:             7            7            7            7            7
  25:             4            4            4            4            4
  30:             6            6            6            6            6

As expected, the order of traces in the output file corresponds to the order of values in the header. Thanks to the separation between headers and data, the operation of sfheadersort is optimally efficient. It first sorts the headers and only then accesses the data, reading each data trace only once.

sfheaderwindow[edit]

Window a dataset based on a header mask.
sfheaderwindow mask=head.rsf < in.rsf > out.rsf inv=n

The input data is a collection of traces n1xn2,
mask is an integer array os size n2, windowed is n1xm2,
where m2 is the number of nonzero elements in mask.
bool inv=n [y/n] inversion flag
file mask= auxiliary input file name


sfheaderwindow is used to window traces in the input file according to trace header information. Here is an example of using sfheaderwindow for randomly selecting part of the traces in the input file. First, let us create an input file with ten traces:

bash$ sfmath n1=5 n2=10 output=x2+1 > input.rsf
bash$ < input.rsf sfdisfil
   0:             1            1            1            1            1
   5:             2            2            2            2            2
  10:             3            3            3            3            3
  15:             4            4            4            4            4
  20:             5            5            5            5            5
  25:             6            6            6            6            6
  30:             7            7            7            7            7
  35:             8            8            8            8            8
  40:             9            9            9            9            9
  45:            10           10           10           10           10

Next, we can create a random file with ten header values using sfnoise.

bash$ sfspike n1=10 | sfnoise rep=y type=n > random.rsf
bash$ < random.rsf sfdisfil
   0:     -0.005768      0.02258     -0.04331      -0.4129      -0.3909
   5:      -0.03582       0.4595      -0.3326        0.498      -0.3517

If you reproduce this example, your numbers will most likely be different, because, in the absence of seed= parameter, sfnoise uses a random seed value to generate pseudo-random numbers. Finally, we apply sfheaderwindow to window the input traces selecting only those for which the header is greater than zero.

bash$ < random.rsf sfmask min=0 > mask.rsf
bash$ < mask.rsf sfdisfil
   0:    0    1    0    0    0    0    1    0    1    0
bash$ < input.rsf sfheaderwindow mask=mask.rsf > output.rsf
bash$ < output.rsf sfdisfil
   0:             2            2            2            2            2
   5:             7            7            7            7            7
  10:             9            9            9            9            9

In this case, only three traces are selected for the output. Thanks to the separation between headers and data, the operation of sfheaderwindow is optimally efficient.

sfin[edit]

Display basic information about RSF files.
sfin info=y check=2. trail=y [<file0.rsf] file1.rsf file2.rsf ...
n1,n2,... are data dimensions
o1,o2,... are axis origins
d1,d2,... are axis sampling intervals
label1,label2,... are axis labels
unit1,unit2,... are axis units
float check=2. Portion of the data (in Mb) to check for zero values.
bool info=y [y/n] If n, only display the name of the data file.
bool trail=y [y/n] If n, skip trailing dimensions of one


sfin is one of the most useful programs for operating with RSF files. It produces quick information on the file hypercube dimensions and checks the consistency of the associated data file. Here is an example. Let us create an RSF file and examine it with sfin.

bash$ sfspike n1=100 n2=20 > spike.rsf
bash$ sfin spike.rsf
spike.rsf:
    in="/tmp/spike.rsf@"
    esize=4 type=float form=native
    n1=100         d1=0.004       o1=0          label1="Time" unit1="s"
    n2=20          d2=0.1         o2=0          label2="Distance" unit2="km"
        2000 elements 8000 bytes

sfin reports the following information:

  • location of the data file (/tmp/spike.rsf\@)
  • element size (4 bytes)
  • element type (floating point)
  • element form (native)
  • hypercube dimensions (100 by 20)
  • axes scale (0.004 and 0.1)
  • axes origin (0 and 0)
  • axes labels
  • axes units
  • total number of elements
  • total number of bytes in the data file

Suppose that the file got corrupted by a buggy program and reports incorrect dimensions. The sfin program should be able to catch the discrepancy.

bash$ echo n2=100 >> spike.rsf
bash$ sfin spike.rsf > /dev/null
sfin:           Actually 8000 bytes, 20% of expected.

sfin also checks the first records in the file for zeros.

bash$ sfspike n1=100 n2=100 k2=99 > spike2.rsf
bash$ sfin spike2.rsf >/dev/null
sfin: The first 32768 bytes are all zeros

The number of bytes to check is adjustable

bash$ sfin spike2.rsf check=0.01 >/dev/null
sfin: The first 16384 bytes are all zeros

You can also output only the location of the data file. This is sometimes handy in scripts.

bash$ sfin spike.rsf spike2.rsf info=n
/tmp/spike.rsf@ /tmp/spike2.rsf@

An alternative is to use sfget, as follows:

bash$ sfget parform=n in < spike.rsf
/tmp/spike.rsf@

To actually eliminate annoying trailing dimensions of length one (not just stop displaying them with trail=n), you may use sed. Example for eliminating axis 6:

sed -i 's/n6=1//g' file.rsf

sfinterleave[edit]

Combine several datasets by interleaving.
sfinterleave > out.rsf axis=3 [< file0.rsf] file1.rsf file2.rsf ...
int axis=3 Axis for interleaving


sfinterleave combines two or more datasets by interleaving them on one of the axes. Here is a quick example:

bash$ sfspike n1=5 n2=5 > one.rsf
bash$ sfdisfil < one.rsf
   0:             1            1            1            1            1
   5:             1            1            1            1            1
  10:             1            1            1            1            1
  15:             1            1            1            1            1
  20:             1            1            1            1            1
bash$ sfscale < one.rsf dscale=2 > two.rsf
bash$ sfdisfil < two.rsf
   0:             2            2            2            2            2
   5:             2            2            2            2            2
  10:             2            2            2            2            2
  15:             2            2            2            2            2
  20:             2            2            2            2            2
bash$ sfinterleave one.rsf two.rsf axis=1 | sfdisfil
   0:             1            2            1            2            1
   5:             2            1            2            1            2
  10:             1            2            1            2            1
  15:             2            1            2            1            2
  20:             1            2            1            2            1
  25:             2            1            2            1            2
  30:             1            2            1            2            1
  35:             2            1            2            1            2
  40:             1            2            1            2            1
  45:             2            1            2            1            2
bash$ sfinterleave < one.rsf two.rsf axis=2 | sfdisfil
   0:             1            1            1            1            1
   5:             2            2            2            2            2
  10:             1            1            1            1            1
  15:             2            2            2            2            2
  20:             1            1            1            1            1
  25:             2            2            2            2            2
  30:             1            1            1            1            1
  35:             2            2            2            2            2
  40:             1            1            1            1            1
  45:             2            2            2            2            2

sfmask[edit]

Create a mask.
sfmask < in.rsf > out.rsf min= max=

Mask is an integer data with ones and zeros.
Ones correspond to input values between min and max.

The output can be used with sfheaderwindow.
float max= maximum header value
float min= minimum header value


sfmask creates an integer output of ones and zeros comparing the values of the input data to specified min= and max= parameters. It is useful for sfheaderwindow and in many other applications. Here is a quick example:

bash$ sfmath n1=10 output="sin(x1)" > sin.rsf
bash$ < sin.rsf sfdisfil
   0:             0       0.8415       0.9093       0.1411      -0.7568
   5:       -0.9589      -0.2794        0.657       0.9894       0.4121
bash$ < sin.rsf sfmask min=-0.5 max=0.5 | sfdisfil
   0:    1    0    0    1    0    0    1    0    0    1

sfmath[edit]

Mathematical operations on data files.
sfmath > out.rsf nostdin=n n#= d#=(1,1,...) o#=(0,0,...) label#= unit#= type= label= unit= output=

Known functions:
cos, sin, tan, acos, asin, atan,
cosh, sinh, tanh, acosh, asinh, atanh,
exp, log, sqrt, abs,
erf, erfc, sign (for float data),
arg, conj, real, imag (for complex data).

sfmath will work on float or complex data, but all the input and output
files must be of the same data type.

An alternative to sfmath is sfadd, which may be more efficient, but is
less versatile.

Examples:

sfmath x=file1.rsf y=file2.rsf power=file3.rsf output='sin((x+2*y)^power)' > out.rsf
sfmath < file1.rsf tau=file2.rsf output='exp(tau*input)' > out.rsf
sfmath n1=100 type=complex output="exp(I*x1)" > out.rsf

Arguments which are not treated as variables in mathematical expressions:
datapath=, type=, out=

See also: sfheadermath.
float d#=(1,1,...) sampling on #-th axis
string label= data label
string label#= label on #-th axis
largeint n#= size of #-th axis
bool nostdin=n [y/n] y - ignore stdin
float o#=(0,0,...) origin on #-th axis
string output= Mathematical description of the output
string type= output data type [float,complex]
string unit= data unit
string unit#= unit on #-th axis

sfmath is a versatile program for mathematical operations with RSF files. It can operate with several input files with the same dimensions and data type. The data type can be real (floating point) or complex. The following example demonstrates several features of sfmath.

bash$ sfmath n1=629 d1=0.01 o1=0 n2=40 d2=1 o2=5 \
output="x2*(8+sin(6*x1+x2/10))" > rad.rsf
bash$ < rad.rsf sfrtoc | sfmath output="input*exp(I*x1)" > rose.rsf
bash$ < rose.rsf sfgraph title=Rose screenratio=1 wantaxis=n | sfpen

The first line creates a 2-D dataset that consists of 40 traces 629 samples each. The values of the data are computed with the formula "x2*(8+sin(6*x1+x2/10))", where x1 refers to the coordinate on the first axis, and x2 is the coordinate of the second axis. In the second line, we convert the data from real to complex using sfrtoc and produce a complex dataset using formula "input*exp(I*x1)", where input refers to the input file. Finally, we plot the complex data as a collection of parametric curves using sfgraph and display the result using sfpen. The plot appearing on your screen should look similar to the figure.

This figure was created with sfmath.

One possible alternative to the second line above is

bash$ < rad.rsf sfmath output=x1 > ang.rsf
bash$ sfmath r=rad.rsf a=ang.rsf output="r*cos(a)" > cos.rsf
bash$ sfmath r=rad.rsf a=ang.rsf output="r*sin(a)" > sin.rsf
bash$ sfcmplx cos.rsf sin.rsf > rose.rsf

Here we refer to input files by names (r and a) and combine the names in a formula.

Functions can be nested and combined, and variable names, as well as the input keyword, may be combined with the axes keywords x1, x2, etc. Here is an example that shifts a wavelet -0.4s to t=0, computes the frequency-domain complex square root (equivalent to the convolutional square root in time), and shifts the result back to t=0.4s:

pi=3.14159265
tshift=0.4

sfspike n1=256 k1=101 |\
sfbandpass flo=4 fhi=30 |\
sffft1 opt=n sym=y |\
sfmath output="sqrt(input*exp(2*$pi*$tshift*x1*I))*exp(-2*$pi*$tshift*x1*I)" |\
sffft1 opt=n sym=y inv=y |\
sfgraph |\
sfpen

sfpad[edit]

Pad a dataset with zeros.
sfpad < in.rsf > out.rsf beg#=0 end#=0 n#=

n#out is equivalent to n#, both of them overwrite end#.

Other parameters from the command line are passed to the output (similar to sfput).
int beg#=0 the number of zeros to add before the beginning of #-th axis
int end#=0 the number of zeros to add after the end of #-th axis
int n#= the output length of #-th axis - padding at the end

sfpad increases the dimensions of the input dataset by padding the data with zeroes. Here are some simple examples.

bash$ sfspike n1=5 n2=3 > one.rsf
bash$ sfdisfil < one.rsf
   0:             1            1            1            1            1
   5:             1            1            1            1            1
  10:             1            1            1            1            1
bash$ < one.rsf sfpad n2=5 | sfdisfil
   0:             1            1            1            1            1
   5:             1            1            1            1            1
  10:             1            1            1            1            1
  15:             0            0            0            0            0
  20:             0            0            0            0            0
bash$ < one.rsf sfpad beg2=2 | sfdisfil
   0:             0            0            0            0            0
   5:             0            0            0            0            0
  10:             1            1            1            1            1
  15:             1            1            1            1            1
  20:             1            1            1            1            1
bash$ < one.rsf sfpad beg2=1 end2=1 | sfdisfil
   0:             0            0            0            0            0
   5:             1            1            1            1            1
  10:             1            1            1            1            1
  15:             1            1            1            1            1
  20:             0            0            0            0            0
bash$ < one.rsf sfwindow n1=3 | sfpad n1=5 n2=5 beg1=1 beg2=1 | sfdisfil
   0:             0            0            0            0            0
   5:             0            1            1            1            0
  10:             0            1            1            1            0
  15:             0            1            1            1            0
  20:             0            0            0            0            0

You can use sfcat to pad data with values other than zeroes.

sfput[edit]

Input parameters into a header.
sfput < in.rsf > out.rsf [parameter=value list]


sfput is a very simple program. It simply appends parameters from the command line to the output RSF file. One can achieve similar results by editing the file by hand or with standard Unix utilities like sed and echo. sfput is sometimes more convenient because it handles input/output operations similarly to other Madagascar programs.

bash$ sfspike n1=10 > spike.rsf
bash$ sfin spike.rsf
spike.rsf:
    in="/tmp/spike.rsf@"
    esize=4 type=float form=native
    n1=10          d1=0.004       o1=0          label1="Time" unit1="s"
        10 elements 40 bytes
bash$ sfput < spike.rsf d1=25 label1=Depth unit1=m > spike2.rsf
bash$ sfin spike2.rsf
spike2.rsf:
    in="/tmp/spike2.rsf@"
    esize=4 type=float form=native
    n1=10          d1=25          o1=0          label1="Depth" unit1="m"
        10 elements 40 bytes

sfreal[edit]

Extract real (sfreal) or imaginary (sfimag) part of a complex dataset.
sfreal < cmplx.rsf > real.rsf


sfreal extracts the real part of a complex type dataset. The imaginary part can be extracted with sfimag, and the real and imaginary part can be combined together with sfcmplx. Here is a simple example. Let us first create a complex dataset with sfmath

bash$ sfmath n1=10 type=complex output="(2+I)*x1" > cmplx.rsf
bash$ fdisfil < cmplx.rsf
   0:          0,         0i         2,         1i         4,         2i
   3:          6,         3i         8,         4i        10,         5i
   6:         12,         6i        14,         7i        16,         8i
   9:         18,         9i

Extracting the real part with sfreal:

bash$ sfreal < cmplx.rsf | sfdisfil
   0:             0            2            4            6            8
   5:            10           12           14           16           18

Extracting the imaginary part with sfimag:

bash$ sfimag < cmplx.rsf | sfdisfil
   0:             0            1            2            3            4
   5:             5            6            7            8            9

sfreverse[edit]

Reverse one or more axes in the data hypercube.
sfreverse < in.rsf > out.rsf which=-1 verb=n memsize=sf_memsize() opt=
int memsize=sf_memsize() Max amount of RAM (in Mb) to be used
string opt= If y, change o and d parameters on the reversed axis;
if i, don't change o and d
bool verb=n [y/n] Verbosity flag
int which=-1 Which axis to reverse.
To reverse a given axis, start with 0,
add 1 to number to reverse n1 dimension,
add 2 to number to reverse n2 dimension,
add 4 to number to reverse n3 dimension, etc.
Thus, which=7 would reverse the first three dimensions,
which=5 just n1 and n3, etc.
which=0 will just pass the input on through unchanged.

Here is an example of using sfreverse. First, let us create a 2-D dataset.

bash$ sfmath n1=5 d1=1 n2=3 d2=1 output=x1+x2 > test.rsf
bash$ < test.rsf sfdisfil
   0:             0            1            2            3            4
   5:             1            2            3            4            5
  10:             2            3            4            5            6

Reversing the first axis:

bash$ < test.rsf sfreverse which=1 | sfdisfil
   0:             4            3            2            1            0
   5:             5            4            3            2            1
  10:             6            5            4            3            2

Reversing the second axis:

bash$ < test.rsf sfreverse which=2 | sfdisfil
   0:             2            3            4            5            6
   5:             1            2            3            4            5
  10:             0            1            2            3            4

Reversing both the first and the second axis:

bash$ < test.rsf sfreverse which=3 | sfdisfil
   0:             2            3            4            5            6
   5:             1            2            3            4            5
  10:             0            1            2            3            4

As you can see, the which= parameter controls the axes that are being reversed by encoding them into one number. When an axis is reversed, what happens with its axis origin and sampling parameters? This behavior is controlled by opt=. In our example,

bash$ < test.rsf sfget n1 o1 d1
n1=5
o1=0
d1=1
bash$ < test.rsf sfreverse which=1 | sfget o1 d1
o1=4
d1=-1

The default behavior (equivalent to opt=y) puts the origin o1 at the end of the axis and reverses the sampling parameter d1. Using opt=n preserves the sampling but reverses the origin.

bash$ < test.rsf sfreverse which=1 opt=n | sfget o1 d1
o1=-4
d1=1

Using opt=i preserves both the sampling and the origin while reversing the axis.

bash$ < test.rsf sfreverse which=1 opt=i | sfget o1 d1
o1=0
d1=1

One of the three possible behaviors may be desirable depending on the application.

sfrm[edit]

Remove RSF files together with their data.
sfrm file1.rsf [file2.rsf ...] [-i] [-v] [-f]
Mimics the standard Unix rm command.

See also: sfmv, sfcp.

sfrm is a program for removing RSF files. Its arguments mimic the arguments of the standard Unix rm utility: -v for verbosity, -i for interactive inquiry, -f for force removal of suspicious files. Unlike the Unix rm, sfrm removes both the RSF header files and the binary files that the headers point to. Example:

bash$ sfspike n1=10 > spike.rsf datapath=./
bash$ sfget in < spike.rsf
in=./spike.rsf@
bash$ ls spike*
spike.rsf  spike.rsf@
bash$ sfrm -v spike.rsf
sfrm: sf_rm: Removing header spike.rsf
sfrm: sf_rm: Removing data ./spike.rsf@
bash$ ls spike*
ls: No match.

sfrotate[edit]

Rotate a portion of one or more axes in the data hypercube.
sfrotate < in.rsf > out.rsf verb=n memsize=sf_memsize() rot#=(0,0,...)
int memsize=sf_memsize() Max amount of RAM (in Mb) to be used
int rot#=(0,0,...) length of #-th axis that is moved to the end
bool verb=n [y/n] Verbosity flag

sfrotate modifies the input dataset by splitting it into parts and putting the parts back in a different order. Here is a quick example.

bash$ sfmath n1=5 d1=1 n2=3 d2=1 output=x1+x2 > test.rsf
bash$ < test.rsf sfdisfil
   0:             0            1            2            3            4
   5:             1            2            3            4            5
  10:             2            3            4            5            6

Rotating the first axis by putting the last two columns in front:

bash$ < test.rsf sfrotate rot1=2 | sfdisfil
   0:             3            4            0            1            2
   5:             4            5            1            2            3
  10:             5            6            2            3            4

Rotating the second axis by putting the last row in front:

bash$ < test.rsf sfrotate rot2=1 | sfdisfil
   0:             2            3            4            5            6
   5:             0            1            2            3            4
  10:             1            2            3            4            5

Rotating both the first and the second axis:

bash$ < test.rsf sfrotate rot1=3 rot2=1 | sfdisfil
   0:             4            5            6            2            3
   5:             2            3            4            0            1
  10:             3            4            5            1            2

The transformation is shown schematically in Figure~(fig:rotate).

Schematic transformation of data with sfrotate.

sfrtoc[edit]

Convert real data to complex (by adding zero imaginary part).
sfrtoc < real.rsf > cmplx.rsf pair=n

See also: sfcmplx
bool pair=n [y/n] y - use odd elements for the real part and even ones for the imaginary part

The input to sfrtoc can be any type=float dataset:

bash$ sfspike n1=10 n2=20 n3=30 >real.rsf
bash$ sfin real.rsf
real.rsf:
    in="/var/tmp/real.rsf@"
    esize=4 type=float form=native 
    n1=10          d1=0.004       o1=0          label1="Time" unit1="s" 
    n2=20          d2=0.1         o2=0          label2="Distance" unit2="km" 
    n3=30          d3=0.1         o3=0          label3="Distance" unit3="km" 
        6000 elements 24000 bytes

The output dataset will have type=complex, and its binary will be twice the size of the input:

bash$ <real.rsf sfrtoc >complex.rsf
bash$ sfin complex.rsf 
complex.rsf:
    in="/var/tmp/complex.rsf@"
    esize=8 type=complex form=native 
    n1=10          d1=0.004       o1=0          label1="Time" unit1="s" 
    n2=20          d2=0.1         o2=0          label2="Distance" unit2="km" 
    n3=30          d3=0.1         o3=0          label3="Distance" unit3="km" 
        6000 elements 48000 bytes

sfscale[edit]

Scale data.
sfscale < in.rsf > out.rsf axis=0 rscale=0. pclip=100. dscale=1.

To scale by a constant factor, you can also use sfmath.
int axis=0 Scale by maximum in the dimensions up to this axis.
float dscale=1. Scale by this factor (works if rscale=0)
float pclip=100. data clip percentile
float rscale=0. Scale by this factor.

sfscale scales the input dataset by a factor. Here are some simple examples. First, let us create a test dataset.

bash$ sfmath n1=5 n2=3 o1=1 o2=1 output="x1*x2" > test.rsf
bash$ < test.rsf sfdisfil   
   0:             1            2            3            4            5
   5:             2            4            6            8           10
  10:             3            6            9           12           15

Scale every data point by 2:

bash$ < test.rsf sfscale dscale=2 | sfdisfil
   0:             2            4            6            8           10
   5:             4            8           12           16           20
  10:             6           12           18           24           30

Divide every trace by its maximum value:

bash$ < test.rsf sfscale axis=1 | sfdisfil
   0:           0.2          0.4          0.6          0.8            1
   5:           0.2          0.4          0.6          0.8            1
  10:           0.2          0.4          0.6          0.8            1

Divide by the maximum value in the whole 2-D dataset:

bash$ < test.rsf sfscale axis=2 | sfdisfil
   0:       0.06667       0.1333          0.2       0.2667       0.3333
   5:        0.1333       0.2667          0.4       0.5333       0.6667
  10:           0.2          0.4          0.6          0.8            1

The rscale= parameter is synonymous with dscale= except when it is equal to zero. With sfscale dscale=0, the dataset gets multiplied by zero. If using rscale=0, the other parameters are used to define scaling. Thus, sfscale rscale=0 axis=1 is equivalent to sfscale axis=1, and sfscale rscale=0 is equivalent to sfscale dscale=1.

sfspike[edit]

Generate simple data: spikes, boxes, planes, constants.
sfspike < in.rsf > spike.rsf mag= nsp=1 k#=[0,...] l#=[k1,k2,...] p#=[0,...] n#= o#=[0,0,...] d#=[0.004,0.1,0.1,...] label#=[Time,Distance,Distance,...] unit#=[s,km,km,...] title=

Spike positioning is given in samples and starts with 1.
float d#=[0.004,0.1,0.1,...] sampling on #-th axis
ints k#=[0,...] spike starting position [nsp]
ints l#=[k1,k2,...] spike ending position [nsp]
string label#=[Time,Distance,Distance,...] label on #-th axis
floats mag= spike magnitudes [nsp]
int n#= size of #-th axis
int nsp=1 Number of spikes
float o#=[0,0,...] origin on #-th axis
floats p#=[0,...] spike inclination (in samples) [nsp]
string title= title for plots
string unit#=[s,km,km,...] unit on #-th axis


sfspike takes no input and generates an output with "spikes". It is an easy way to create data. Here is an example:

bash$ sfspike n1=5 n2=3 k1=4 k2=1 | sfdisfil
   0:             0            0            0            1            0
   5:             0            0            0            0            0
  10:             0            0            0            0            0

The spike location is specified by parameters k1=4 and k2=1. Note that the locations are numbered starting from 1. If one of the parameters is omitted or given the value of zero, the spike in the corresponding direction becomes a plane:

bash$ sfspike n1=5 n2=3 k1=4 | sfdisfil   
   0:             0            0            0            1            0
   5:             0            0            0            1            0
  10:             0            0            0            1            0

If no spike parameters are given, the whole dataset is filled with ones:

bash$ sfspike n1=5 n2=3 | sfdisfil
   0:             1            1            1            1            1
   5:             1            1            1            1            1
  10:             1            1            1            1            1

To create several spikes, use the nsp= parameter and give a comma-separated list of values to k#= arguments:

bash$ sfspike n1=5 n2=3 nsp=3 k1=1,3,4 k2=1,2,3 | sfdisfil
   0:             1            0            0            0            0
   5:             0            0            1            0            0
  10:             0            0            0            1            0

If the number of values in the list is smaller than nsp, the last value gets repeated, and the spikes add on top of each other, creating larger amplitudes:

bash$ sfspike n1=5 n2=3 nsp=3 k1=1,3 k2=1,2 | sfdisfil
   0:             1            0            0            0            0
   5:             0            0            2            0            0
  10:             0            0            0            0            0

The magnitude of the spikes can be controlled explicitly with the mag= parameter:

bash$ sfspike n1=5 n2=3 nsp=3 k1=1,3,4 k2=1,2,3 mag=1,4,2 | sfdisfil
   0:             1            0            0            0            0
   5:             0            0            4            0            0
  10:             0            0            0            2            0

You can create boxes instead of spikes by using l#= parameters:

bash$ sfspike n1=5 n2=3 k1=2 l1=4 k2=2 mag=8 | sfdisfil
   0:             0            0            0            0            0
   5:             0            8            8            8            0
  10:             0            0            0            0            0

In this case, k1=2 specifies the box start, and l1=4 specifies the box end. Finally, multi-dimensional planes can be given an inclination by using p#= parameters:

bash$ sfspike n1=5 n2=3 k1=2 p2=1 | sfdisfil
   0:             0            1            0            0            0
   5:             0            0            1            0            0
  10:             0            0            0            1            0

Note that sfspike interprets the p#= parameters in stepout from sample to sample, not in terms of axes units (i.e. s/m).

More than one p parameter can be specified. In this case, a (hyper) plane will be created.

When the inclination value is not integer, simple linear interpolation is used:

bash$ sfspike n1=5 n2=3 k1=2 p2=0.7 | sfdisfil
   0:             0            1            0            0            0
   5:             0          0.3          0.7            0            0
  10:             0            0          0.6          0.4            0

sfspike supplies default dimensions and labels to all axes:

bash$ sfspike n1=5 n2=3 n3=4 > spike.rsf
bash$ sfin spike.rsf
spike.rsf:
    in="/var/tmp/spike.rsf@"
    esize=4 type=float form=native 
    n1=5           d1=0.004       o1=0          label1="Time" unit1="s" 
    n2=3           d2=0.1         o2=0          label2="Distance" unit2="km" 
    n3=4           d3=0.1         o3=0          label3="Distance" unit3="km" 
	60 elements 240 bytes

As you can see, the first axis is assumed to be time, with sampling of seconds. All other axes are assumed to be distance, with sampling of kilometers. All these parameters can be changed on the command line.

bash$ sfspike n1=5 n2=3 n3=4 label3=Offset unit3=ft d3=20 > spike.rsf
bash$ sfin spike.rsf
spike.rsf:
    in="/var/tmp/spike.rsf@"
    esize=4 type=float form=native 
    n1=5           d1=0.004       o1=0          label1="Time" unit1="s" 
    n2=3           d2=0.1         o2=0          label2="Distance" unit2="km" 
    n3=4           d3=20          o3=0          label3="Offset" unit3="ft" 
	60 elements 240 bytes

sfspray[edit]

Extend a dataset by duplicating in the specified axis dimension.
sfspray < in.rsf > out.rsf axis=2 n= d= o= label= unit=
This operation is adjoint to sfstack.
int axis=2 which axis to spray
float d= Sampling of the newly created dimension
string label= Label of the newly created dimension
int n= Size of the newly created dimension
float o= Origin of the newly created dimension
string unit= Units of the newly created dimension

sfspray extends the input hypercube by replicating the data in one of the dimensions. The output dataset acquires one additional dimension. Here is an example: Start with a 2-D dataset

bash$ sfmath n1=5 n2=2 output=x1+x2 > test.rsf
bash$ sfin test.rsf
test.rsf:
    in="/var/tmp/test.rsf@"
    esize=4 type=float form=native 
    n1=5           d1=1           o1=0          
    n2=2           d2=1           o2=0          
        10 elements 40 bytes
bash$ < test.rsf sfdisfil
   0:             0            1            2            3            4
   5:             1            2            3            4            5

Extend the data in the second dimension

bash$ < test.rsf sfspray axis=2 n=3 > test2.rsf
bash$ sfin test2.rsf
test2.rsf:
    in="/var/tmp/test2.rsf@"
    esize=4 type=float form=native 
    n1=5           d1=1           o1=0          
    n2=3           d2=1           o2=0          
    n3=2           d3=1           o3=0          
        30 elements 120 bytes
bash$ < test2.rsf sfdisfil
   0:             0            1            2            3            4
   5:             0            1            2            3            4
  10:             0            1            2            3            4
  15:             1            2            3            4            5
  20:             1            2            3            4            5
  25:             1            2            3            4            5

The output is three-dimensional, with traces from the original data duplicated along the second axis. Extend the data in the third dimension

bash$ < test.rsf sfspray axis=3 n=2 > test3.rsf
bash$ sfin test3.rsf
test3.rsf:
    in="/var/tmp/test3.rsf@"
    esize=4 type=float form=native 
    n1=5           d1=1           o1=0          
    n2=2           d2=1           o2=0          
    n3=2           d3=?           o3=?          
        20 elements 80 bytes
bash$ < test3.rsf sfdisfil
   0:             0            1            2            3            4
   5:             1            2            3            4            5
  10:             0            1            2            3            4
  15:             1            2            3            4            5

The output is also three-dimensional, with the original data replicated along the third axis.

sfstack[edit]

Stack a dataset over one of the dimensions.
sfstack < in.rsf > out.rsf scale= axis=2 rms=n norm=y min=n max=n prod=n

This operation is adjoint to sfspray.
int axis=2 which axis to stack. If axis=0, stack over all dimensions
bool max=n [y/n] If y, find maximum instead of stack. Ignores rms and norm.
bool min=n [y/n] If y, find minimum instead of stack. Ignores rms and norm.
bool norm=y [y/n] If y, normalize by fold.
bool prod=n [y/n] If y, find product instead of stack. Ignores rms and norm.
bool rms=n [y/n] If y, compute the root-mean-square instead of stack.
floats scale= optionally scale before stacking [n2]

While sfspray adds a dimension to a hypercube, sfstack effectively removes one of the dimensions by stacking over it. Here are some examples:

bash$ sfmath n1=5 n2=3 output=x1+x2 > test.rsf
bash$ < test.rsf sfdisfil
   0:             0            1            2            3            4
   5:             1            2            3            4            5
  10:             2            3            4            5            6
bash$ < test.rsf sfstack axis=2 | sfdisfil
   0:           1.5            2            3            4            5
bash$ < test.rsf sfstack axis=1 | sfdisfil
   0:           2.5            3            4

Why is the first value not 1 (in the first case) or 2 (in the second case)? By default, sfstack normalizes the stack by the fold (the number of non-zero entries). To avoid normalization, use norm=n, as follows:

bash$ < test.rsf sfstack norm=n | sfdisfil 
   0:             3            6            9           12           15

sfstack can also compute root-mean-square values as well as minimum and maximum values.

bash$ < test.rsf sfstack rms=y | sfdisfil
   0:         1.581         2.16        3.109        4.082        5.066
bash$ < test.rsf sfstack min=y | sfdisfil
   0:             0            1            2            3            4
bash$ < test.rsf sfstack axis=1 max=y | sfdisfil 
   0:             4            5            6

sftransp[edit]

Transpose two axes in a dataset.
sftransp < in.rsf > out.rsf memsize=sf_memsize() plane=

If you get a "Cannot allocate memory" error, give the program a
memsize=1 command-line parameter to force out-of-core operation.
int memsize=sf_memsize() Max amount of RAM (in Mb) to be used
int plane= Two-digit number with axes to transpose. The default is 12

The sftransp program transposes the input hypercube exchanging the two axes specified by the plane= parameter.

bash$ sfspike n1=10 n2=20 n3=30 > orig123.rsf
bash$ sfin orig123.rsf 
orig123.rsf:
    in="/var/tmp/orig123.rsf@"
    esize=4 type=float form=native 
    n1=10          d1=0.004       o1=0          label1="Time" unit1="s" 
    n2=20          d2=0.1         o2=0          label2="Distance" unit2="km" 
    n3=30          d3=0.1         o3=0          label3="Distance" unit3="km" 
        6000 elements 24000 bytes
bash$ <orig123.rsf sftransp plane=23 >out132.rsf
bash$ sfin out132.rsf 
out132.rsf:
    in="/var/tmp/out132.rsf@"
    esize=4 type=float form=native 
    n1=10          d1=0.004       o1=0          label1="Time" unit1="s" 
    n2=30          d2=0.1         o2=0          label2="Distance" unit2="km" 
    n3=20          d3=0.1         o3=0          label3="Distance" unit3="km" 
        6000 elements 24000 bytes
bash$ <orig123.rsf sftransp plane=13 >out321.rsf
bash$ sfin out321.rsf 
out321.rsf:
    in="/var/tmp/out132.rsf@"
    esize=4 type=float form=native 
    n1=30          d1=0.1         o1=0          label1="Distance" unit1="km" 
    n2=20          d2=0.1         o2=0          label2="Distance" unit2="km" 
    n3=10          d3=0.004       o3=0          label3="Time" unit3="s" 
        6000 elements 24000 bytes

sftransp tries to fit the dataset in memory to transpose it there but, if not enough memory is available, it performs a slower transpose out of core using disk operations. You can control the amount of available memory using the memsize= parameter or the RSFMEMSIZE environmental variable.

sfwindow[edit]

Window a portion of a dataset.
sfwindow < in.rsf > out.rsf verb=n squeeze=y j#=(1,...) d#=(d1,d2,...) f#=(0,...) min#=(o1,o2,,...) n#=(0,...) max#=(o1+(n1-1)*d1,o2+(n1-1)*d2,,...)

Other parameters from the command line are passed to the output (similar to sfput).
float d#=(d1,d2,...) sampling in #-th dimension
largeint f#=(0,...) window start in #-th dimension
int j#=(1,...) jump in #-th dimension
float max#=(o1+(n1-1)*d1,o2+(n1-1)*d2,,...) maximum in #-th dimension
float min#=(o1,o2,,...) minimum in #-th dimension
largeint n#=(0,...) window size in #-th dimension
bool squeeze=y [y/n] if y, squeeze dimensions equal to 1 to the end
bool verb=n [y/n] Verbosity flag


sfwindow is used to window a portion of the dataset. Here is a quick example: Start by creating some data.

bash$ sfmath n1=5 n2=3 o1=1 o2=1 output="x1*x2" > test.rsf
bash$ < test.rsf sfdisfil
   0:             1            2            3            4            5
   5:             2            4            6            8           10
  10:             3            6            9           12           15

Now window the first two rows:

bash$ < test.rsf sfwindow n2=2 | sfdisfil
   0:             1            2            3            4            5
   5:             2            4            6            8           10

Window the first three columns:

bash$ < test.rsf sfwindow n1=3 | sfdisfil
   0:             1            2            3            2            4
   5:             6            3            6            9

Window the middle row:

bash$ < test.rsf sfwindow f2=1 n2=1 | sfdisfil
   0:             2            4            6            8           10

You can interpret the f# and n# parameters as meaning "skip that many rows/columns" and "select that many rows/columns" correspondingly. Window the middle point in the dataset:

bash$ < test.rsf sfwindow f1=2 n1=1 f2=1 n2=1 | sfdisfil
   0:             6

Window every other column:

bash$ < test.rsf sfwindow j1=2 | sfdisfil
   0:             1            3            5            2            6
   5:            10            3            9           15

Window every third column:

bash$ < test.rsf sfwindow j1=3 | sfdisfil
   0:             1            4            2            8            3
   5:            12

Alternatively, sfwindow can select a window from the minimum and maximum parameters. In the following example, we are creating a dataset with sfspike and then windowing a portion of it between 1 and 2 seconds in time and sampled at 8 miliseconds.

bash$ sfspike n1=1000 n2=10 > spike.rsf         
bash$ sfin spike.rsf
spike.rsf:
    in="/var/tmp/spike.rsf@"
    esize=4 type=float form=native 
    n1=1000        d1=0.004       o1=0          label1="Time" unit1="s" 
    n2=10          d2=0.1         o2=0          label2="Distance" unit2="km" 
        10000 elements 40000 bytes
bash$ < spike.rsf sfwindow min1=1 max1=2 d1=0.008 > window.rsf
bash$ sfin window.rsf
window.rsf:
    in="/var/tmp/window.rsf@"
    esize=4 type=float form=native 
    n1=126         d1=0.008       o1=1          label1="Time" unit1="s" 
    n2=10          d2=0.1         o2=0          label2="Distance" unit2="km" 
        1260 elements 5040 bytes

By default, sfwindow "squeezes" the hypercube dimensions that are equal to one toward the end of the dataset. Here is an example of taking a time slice:

bash$ < spike.rsf sfwindow n1=1 min1=1 > slice.rsf
bash$ sfin slice.rsf 
slice.rsf:
    in="/var/tmp/slice.rsf@"
    esize=4 type=float form=native 
    n1=10          d1=0.1         o1=0          label1="Distance" unit1="km" 
    n2=1           d2=0.004       o2=1          label2="Time" unit2="s" 
        10 elements 40 bytes

You can change this behavior by specifying squeeze=n.

bash$ < spike.rsf sfwindow n1=1 min1=1 squeeze=n > slice.rsf
bash$ sfin slice.rsf 
slice.rsf:
    in="/var/tmp/slice.rsf@"
    esize=4 type=float form=native 
    n1=1           d1=0.004       o1=1          label1="Time" unit1="s" 
    n2=10          d2=0.1         o2=0          label2="Distance" unit2="km" 
        10 elements 40 bytes

Seismic programs[edit]

Programs in this category are specific for operations on seismic data. The source files for these programs can be found under system/seismic in the Madagascar distribution.

sffkamo[edit]

Computes Azimuth Move-Out (AMO) operator in the f-k log-stretch domain
sffkamo < in.rsf > out.rsf h1= h2= f1= f2= maxe=10.
float f1= input azimuth in degrees
float f2= output azimuth in degrees
float h1= input offset
float h2= output offset
float maxe=10. stability constraint

Sample workflow from SEP-110, 63-70 (2001), with the addition of a bandpass for the input:

Create input -- a (t,x,y) common-offset cube:

sfspike \
n1=128 o1=0.4 d1=0.0032 k1=65 label1=t \
n2=256 o2=-1.536 d2=0.012 k2=129 label2=x \
n3=128 o3=-1.024 d3=0.016 k3=65 label3=y | \
sfbandpass flo=5 fhi=60 > spikebps.rsf

Apply log-stretch FFT:

<spikebps.rsf sfstretch rule=L dens=4 |\
sffft1 |\
sffft3 axis=2 |\
sffft3 axis=3 > spikefft3.rsf

Compute the AMO operator for a file of the dimensions of spikefft3.rsf. The only information taken from stdin are the n, o, d parameters:

<spikefft3.rsf sffkamo h2=2 f2=10 h1=1.8 f1=30 >oper.rsf

Apply the operator by multiplication and fft back to (t, mx, my):

< spikefft3.rsf sfadd mode=prod oper.rsf |\
sffft3 axis=3 inv=y |\
sffft3 axis=2 inv=y |\
sffft1 inv=y |\
sfstretch rule=L dens=4 inv=y > spikeamo.rsf

Prepare for 8-bit greyscale visualization:

< spikeamo.rsf sfbyte pclip=100 gainpanel=a > spikebyte.rsf

Picture from the middle of the impulse response:

<spikebyte.rsf sfgrey3 frame1=65 frame2=129 frame3=65 \
point1=0.333 title='AMO saddle, no f-k filter' | sfpen &

Picture illustrating the artifacts (i.e. need for f-k filter):

< spikebyte.rsf sfgrey3 frame1=65 frame2=97 frame3=97 \
point1=0.333 title='No f-k filter' | sfpen &

Apply the f-k filter and (in this case) visualize:

< spikeamo.rsf sffft1 |\
sffft3 axis=2 |\
sffft3 axis=3 |\
sfdipfilter v1=-2.5 v2=-1.5 v3=1.5 v4=2.5 taper=2 pass=0 dim=3 |\
sffft3 axis=3 inv=y |\
sffft3 axis=2 inv=y |\
sffft1 inv=y |\
sfbyte pclip=100 gainpanel=a |\
sfgrey3 frame1=65 frame2=97 frame3=97 point1=0.333 title='With f-k filter' |\
sfpen &

sfheaderattr[edit]

Integer header attributes.
sfheaderattr < head.rsf

Only nonzero values are reported.

The sfheaderattr examines the contents of a trace header file, typically generated by sfsegyread. In the example below, we examine trace headers in the output of suplane, a program from Seismic Unix.

bash$ suplane > plane.su
bash$ sfsegyread tape=plane.su su=y tfile=tfile.rsf > plane.rsf
bash$ sfheaderattr < tfile.rsf
*******************************************
71 headers, 32 traces
key[0]="tracl"      min[0]=1            max[31]=32          mean=16.5
key[1]="tracr"      min[0]=1            max[31]=32          mean=16.5
key[11]="offset"    min[0]=400          max[31]=400         mean=400
key[38]="ns"        min[0]=64           max[31]=64          mean=64
key[39]="dt"        min[0]=4000         max[31]=4000        mean=4000
*******************************************

For different standard keywords, a minimum, maximum, and mean values are reported unless they are identically zero. This quick inspection can help identify meaningful keywords in the data. The input data type must be int.

sfheadermath[edit]

Mathematical operations, possibly on header keys.
sfheadermath < in.rsf > out.rsf memsize=sf_memsize() output=

Known functions: cos, sin, tan, acos, asin, atan,
cosh, sinh, tanh, acosh, asinh, atanh,
exp, log, sqrt, abs

See also sfmath.

An addition operation can be performed by sfstack.
int memsize=sf_memsize() Max amount of RAM (in Mb) to be used
string output= Describes the output in a mathematical notation.

sfheadermath is a versatile program for mathematical operations on rows of the input file. If the input file is an n1 by n2 matrix, the output will be a 1 by n2 matrix that contains one row made out of mathematical operations on the other rows. sfheadermath can identify a row by number or by a standard SEGY keyword. The latter is helpful in processing headers extracted from SEGY or SU files. Here is an example. First, we create an SU file with suplane and convert it to RSF using sfsegyread.

bash$ suplane > plane.su
bash$ sfsegyread tape=plane.su su=y tfile=tfile.rsf > plane.rsf

The trace header information is saved in tfile.rsf. It contains 71 headers for 32 traces in integer format.

bash$ sfin tfile.rsf
tfile.rsf:
    in="/tmp/tfile.rsf@"
    esize=4 type=int form=native
    n1=71          d1=?           o1=?
    n2=32          d2=?           o2=?
        2272 elements 9088 bytes

Next, we will convert tfile.rsf to a floating-point format and run sfheadermath to create a new header.

bash$ < tfile.rsf sfdd type=float | \
sfheadermath myheader=1 output="sqrt(myheader+(2+10*offset^2))" > new.rsf
bash$ sfin new.rsf
new.rsf:
    in="/tmp/new.rsf@"
    esize=4 type=float form=native
    n1=1           d1=?           o1=?
    n2=32          d2=?           o2=?
        32 elements 128 bytes

We defined "header" as being the row number 1 in the input (note that numbering starts with 0) and combined it with "offset", which is a standard SEGY keyword that denotes row number 11 (see the output of sfheaderattr above.) A variety of mathematical expressions can be defined in the output= string. The expression processing engine is shared with sfmath.

sfsegyheader[edit]

Make a trace header file for segywrite.
sfsegyheader < in.rsf > out.rsf n1= d1=

Use the output for tfile= argument in segywrite.
float d1= trace sampling
int n1= number of samples in a trace

sfsegyread[edit]

Convert a SEG-Y or SU dataset to RSF.
sfsegyread mask=msk.rsf > out.rsf tfile=hdr.rsf verb=n su= suxdr=n endian=y format=segyformat (bhead) ns=segyns (bhead) tape= read= hfile= bfile=

Data headers and trace headers are separated from the data.

"suread" is equivalent to "segyread su=y"

SEGY key names:

tracl: trace sequence number within line 0

tracr: trace sequence number within reel 4

fldr: field record number 8

tracf: trace number within field record 12

ep: energy source point number 16

cdp: CDP ensemble number 20

cdpt: trace number within CDP ensemble 24

trid: trace identification code:
1 = seismic data
2 = dead
3 = dummy
4 = time break
5 = uphole
6 = sweep
7 = timing
8 = water break
9---, N = optional use (N = 32,767) 28

nvs: number of vertically summed traces 30

nhs: number of horizontally summed traces 32

duse: data use:
1 = production
2 = test 34

offset: distance from source point to receiver
group (negative if opposite to direction
in which the line was shot) 36

gelev: receiver group elevation from sea level
(above sea level is positive) 40

selev: source elevation from sea level
(above sea level is positive) 44

sdepth: source depth (positive) 48

gdel: datum elevation at receiver group 52

sdel: datum elevation at source 56

swdep: water depth at source 60

gwdep: water depth at receiver group 64

scalel: scale factor for previous 7 entries
with value plus or minus 10 to the
power 0, 1, 2, 3, or 4 (if positive,
multiply, if negative divide) 68

scalco: scale factor for next 4 entries
with value plus or minus 10 to the
power 0, 1, 2, 3, or 4 (if positive,
multiply, if negative divide) 70

sx: X source coordinate 72

sy: Y source coordinate 76

gx: X group coordinate 80

gy: Y group coordinate 84

counit: coordinate units code:
for previous four entries
1 = length (meters or feet)
2 = seconds of arc (in this case, the
X values are unsigned longitude and the Y values
are latitude, a positive value designates
the number of seconds east of Greenwich
or north of the equator 88

wevel: weathering velocity 90

swevel: subweathering velocity 92

sut: uphole time at source 94

gut: uphole time at receiver group 96

sstat: source static correction 98

gstat: group static correction 100

tstat: total static applied 102

laga: lag time A, time in ms between end of 240-
byte trace identification header and time
break, positive if time break occurs after
end of header, time break is defined as
the initiation pulse which maybe recorded
on an auxiliary trace or as otherwise
specified by the recording system 104

lagb: lag time B, time in ms between the time
break and the initiation time of the energy source,
may be positive or negative 106

delrt: delay recording time, time in ms between
initiation time of energy source and time
when recording of data samples begins
(for deep water work if recording does not
start at zero time) 108

muts: mute time--start 110

mute: mute time--end 112

ns: number of samples in this trace 114

dt: sample interval, in micro-seconds 116

gain: gain type of field instruments code:
1 = fixed
2 = binary
3 = floating point
4 ---- N = optional use 118

igc: instrument gain constant 120

igi: instrument early or initial gain 122

corr: correlated:
1 = no
2 = yes 124

sfs: sweep frequency at start 126

sfe: sweep frequency at end 128

slen: sweep length in ms 130

styp: sweep type code:
1 = linear
2 = cos-squared
3 = other 132

stas: sweep trace length at start in ms 134

stae: sweep trace length at end in ms 136

tatyp: taper type: 1=linear, 2=cos^2, 3=other 138

afilf: alias filter frequency if used 140

afils: alias filter slope 142

nofilf: notch filter frequency if used 144

nofils: notch filter slope 146

lcf: low cut frequency if used 148

hcf: high cut frequncy if used 150

lcs: low cut slope 152

hcs: high cut slope 154

year: year data recorded 156

day: day of year 158

hour: hour of day (24 hour clock) 160

minute: minute of hour 162

sec: second of minute 164

timbas: time basis code:
1 = local
2 = GMT
3 = other 166

trwf: trace weighting factor, defined as 1/2^N
volts for the least sigificant bit 168

grnors: geophone group number of roll switch
position one 170

grnofr: geophone group number of trace one within
original field record 172

grnlof: geophone group number of last trace within
original field record 174

gaps: gap size (total number of groups dropped) 176

otrav: overtravel taper code:
1 = down (or behind)
2 = up (or ahead) 178

cdpx: X coordinate of CDP 180

cdpy: Y coordinate of CDP 184

iline: in-line number 188

xline: cross-line number 192

shnum: shotpoint number 196

shsca: shotpoint scalar 200

tval: trace value meas. 202

tconst4: transduction const 204

tconst2: transduction const 208

tunits: transduction units 210

device: device identifier 212

tscalar: time scalar 214

stype: source type 216

sendir: source energy dir. 218

unknown: unknown 222

smeas4: source measurement 224

smeas2: source measurement 228

smeasu: source measurement unit 230

unass1: unassigned 232

unass2: unassigned 236
string bfile= output binary data header file
bool endian=y [y/n] Whether to automatically estimate endianness or not
int format=segyformat (bhead) [1,2,3,5] Data format. The default is taken from binary header.
1 is IBM floating point
2 is 4-byte integer
3 is 2-byte integer
5 is IEEE floating point
string hfile= output text data header file
string mask= optional header mask for reading only selected traces (auxiliary input file name)
int ns=segyns (bhead) Number of samples. The default is taken from binary header
string read= what to read: h - header, d - data, b - both (default)
bool su= [y/n] y if input is SU, n if input is SEGY
bool suxdr=n [y/n] y, SU has XDR support
string tape= input data
string tfile= output trace header file (auxiliary output file name)
bool verb=n [y/n] Verbosity flag

The SEG Y format is an open standard for the exchange of geophysical data. It is controlled by the non-profit SEG Technical Standards Committee. There are two versions of this standard: rev0 (1975)[3] and rev1 (2002)[4]. The implementation in sfsegyread is a mixture of rev0 (i.e. no checks for Extended Textual Headers) and rev1 (IEEE floating point format allowed for trace data samples).

An SEG-Y file, as understood by sfsegyread, contains a "Reel Identification Header" (3200 bytes in EBCDIC followed by 400 bytes in a binary encoding), followed by a number of "Trace Blocks." Each "Trace Block" contains a 240-byte "Trace Header" (binary) followed by "Trace Data" -- a sequence of ns samples. Binary values in both reel headers and trace headers are two's complement integers, either two bytes or four bytes long. There are no floating-point values defined in the headers. Trace Data samples can have various encodings, either floating point or integer, described further down, but they are all big-endian. To convert from SEG-Y to RSF, sfsegyread will strip the tape reel EBCDIC header and convert it to ASCII, will extract the reel binary header without changing it, and will put the trace headers into one RSF file, and the traces themselves on another.

SEG-Y Trace Headers[edit]

In the SEG-Y standard, only the first 180 bytes of the 240-byte trace header are defined; bytes 181-240 are reserved for non-standard header information, and these locations are increasingly used in modern SEG-Y files and their variants. The standard provides for a total of 71 4-byte and 2-byte predefined header words. These 71 standard words have defined lengths and byte offsets, and only these words and byte locations are read using segyread and output to the RSF header file with the tfile= option. The user may remap these predefined keywords to different byte offsets.

SU File Format[edit]

An SU file is nothing more than an SEG-Y file without the reel headers and with the Trace Data samples in the native encoding of the CPU the file was created on (Attention -- limited portability!). So, to convert from SU to RSF, sfsegyread will just separate headers and traces into two RSF files.

SEG-Y specific parameters[edit]

  • hfile= specifies the name of the file in which the EBCDIC reel header will be put after conversion to ASCII. If you are certain there is no useful information in it, hfile=/dev/null works just fine. If you do not specify anything for this parameter, you will get an ASCII file named header in the current directory. If you want to quickly preview this header before running sfsegyread, use
    dd if=input.segy count=40 bs=80 cbs=80 conv=unblock,ascii
  • bfile= specifies the name of the file in which the binary reel header (the 400-byte thing following the 3600-byte EBCDIC) will be put without any conversion. The default name is "binary". Unless you have software that knows how to read exactly this special type of file, it will be completely useless, so do bfile=/dev/null
  • format= specifies the format in which the trace data samples are in the SEG-Y input file. This is read from the binary reel header of the SEG-Y file. Valid values are 1(IBM floating point), 2 (4-byte integer), 3 (2-byte integer), and 5 (IEEE floating point). If the input file is SU, the format will be assumed to be the native float format.
  • keyname= specifies the byte offset to remap a header using the trace header key names shown above. For example, if the CDP locations have been placed in bytes 181-184 instead of the standard 21-24, cdp=180 will remap the trace header to that location.

SU-specific parameters[edit]

  • suxdr= specifies whether the input file was created with an SU package with XDR support enabled. If you have access to the source code of your SU install (try $CWPROOT/src), type: grep 'XDRFLAG =' $CWPROOT/src/Makefile.config and look at the last uncommented entry. If no value is given for XDRFLAG, the package was not compiled with XDR support.

Common parameters[edit]

  • su= specifies if the input file is SU or SEG-Y. The default is su=n (SEG-Y file).
  • read= specifies what parts of the "Trace Blocks" will be read. It can be read=d (only trace data is read), read=h (only trace headers are read) or read=b (both are read).
  • tfile= gives the name of the RSF file to which trace headers are written. Obviously, it should be only specified with read=h or read=b.
  • mask= is an optional parameter specifying the name of a mask that says which traces will be read. The mask is a 1-D RSF file with integers. The number of mask samples is the same as the number of traces in the unmasked SEG-Y. There should be zeros in the mask in places corresponding to unwanted traces.
  • ns= specifies the number of samples in a trace. For SEG-Y files, the default is taken from the binary reel header, and for SU files, from the header of the first trace. This parameter is, however, critical enough that a command line override was given for it.
  • verbose= is the verbosity flag. Can be y or n.
  • endian= is a y/n flag (default y), specifying whether to estimate automatically or not if samples in the Trace Data blocks are big-endian or little-endian. Try it if you are in trouble and do not know what else to do; otherwise, let the automatic estimation do its job.

sfsegywrite[edit]

Convert an RSF dataset to SEGY or SU.
sfsegywrite < in.rsf tfile=hdr.rsf verb=false su=false endian=sf_endian() tape= hfile= bfile=

Merges trace headers with data.
string bfile= input binary data header file
bool endian=sf_endian() [y/n] big/little endian flag. The default is estimated automatically
string hfile= input text data header file
bool su=n [y/n] y if output is SU, n if output is SEGY
string tape=
bool verb=n [y/n] Verbosity flag

Please see sfsegyread for a complete description of parameter meanings and background issues. Parameters bfile and hfile should only be given values when the desired file is SEG-Y (default). The tape= tag specifies the output file.

Generic programs[edit]

Programs in this category are general signal and image processing programs. The source files for these programs can be found under system/generic in the Madagascar distribution.

sfnoise[edit]

Add random noise to the data.
sfnoise < in.rsf > out.rsf seed=time(NULL) type=y var= range= mean=0 rep=n
float mean=0 noise mean
float range= noise range (default=1)
bool rep=n [y/n] if y, replace data with noise
int seed=time(NULL) random seed
bool type=y [y/n] noise distribution, y: normal, n: uniform
float var= noise variance

See the Program of the Month blog entry.

Plotting programs (stable)[edit]

The source files for these programs can be found under plot/main in the Madagascar distribution.

sfbox[edit]

Draw a balloon-style label.
sfbox lab_color=VP_WHITE lab_fat=0 pscale=1. pointer=y reverse=n lat=0. long=90. angle=0. x0=0. y0=0. scale0=1. xt=2. yt=0. x_oval=0. y_oval=0. boxit=y length= scalet= size=.25 label= > out.vpl
float angle=0. longitude of floating label in 3-D
bool boxit=y [y/n] if y, create a box around text
int lab_color=VP_WHITE label color
int lab_fat=0 label fatness
string label= text for label
float lat=0.
float length= normalization for xt and yt
float long=90. latitude and longitude of viewpoint in 3-D
bool pointer=y [y/n] if y, create arrow pointer
float pscale=1. scale factor for width of pointer
bool reverse=n [y/n]
float scale0=1. scale factor for x0 and y0
float scalet=
float size=.25 text height in inches
float x0=0.
float x_oval=0.
float xt=2.
float y0=0. position of the pointer tip
float y_oval=0. size of the oval around pointer
float yt=0. relative position of text

sfcontour[edit]

Contour plot.
sfcontour < in.rsf c= min1=o1 min2=o2 max1=o1+(n1-1)*d1 max2=o2+(n2-1)*d2 nc=50 dc= c0= transp=y minval= maxval= allpos=y barlabel= > plot.vpl
Run "sfdoc stdplot" for more parameters.
bool allpos=y [y/n] contour positive values only
string barlabel=
floats c= [nc]
float c0= first contour
float dc= contour increment
float max1=o1+(n1-1)*d1
float max2=o2+(n2-1)*d2 data window to plot
float maxval= maximum value for scalebar (default is the data maximum)
float min1=o1
float min2=o2
float minval= minimum value for scalebar (default is the data minimum)
int nc=50 number of contours
bool transp=y [y/n] if y, transpose the axes

sfdots[edit]

Plot signal with lollipops.
sfdots < in.rsf labels= dots=(n1 <= 130)? 1: 0 seemean=(bool) (n2 <= 30) strings=(bool) (n1 <= 400) connect=1 corners= silk=n gaineach=y labelsz=8 yreverse=n constsep=n seedead=n transp=n xxscale=1. yyscale=1. clip=-1. overlap=0.9 screenratio=VP_SCREEN_RATIO screenht=VP_STANDARD_HEIGHT screenwd=screenhigh / screenratio radius=dd1/3 label1= unit1= title= > plot.vpl
float clip=-1. data clip
int connect=1 connection type: 1 - diagonal, 2 - bar, 4 - only for non-zero data
bool constsep=n [y/n] if y, use constant trace separation
int corners= number of polygon corners (default is 6)
int dots=(n1 <= 130)? 1: 0 type of dots: 1 - baloon, 0 - no dots, 2 - only for non-zero data
bool gaineach=y [y/n] if y, gain each trace independently
string label1=
strings labels= trace labels [n2]
int labelsz=8 label size
float overlap=0.9 trace overlap
float radius=dd1/3 dot radius
float screenht=VP_STANDARD_HEIGHT screen height
float screenratio=VP_SCREEN_RATIO screen aspect ratio
float screenwd=screenhigh / screenratio screen width
bool seedead=n [y/n] if y, show zero traces
bool seemean=(bool) (n2 <= 30) [y/n] if y, draw axis lines
bool silk=n [y/n] if y, silky plot
bool strings=(bool) (n1 <= 400) [y/n] if y, draw strings
string title=
bool transp=n [y/n] if y, transpose the axis
string unit1=
float xxscale=1. x scaling
bool yreverse=n [y/n] if y, reverse y axis
float yyscale=1. y scaling

sfgraph3[edit]

Generate 3-D cube plot for surfaces.
sfgraph3 < in.rsf orient=1 min= max= point1=0.5 point2=0.5 frame1=0.5*(min+max) frame2=n1-1 frame3=0 movie=0 dframe=1 n1pix=n1/point1+n3/(1.-point1) n2pix=n2/point2+n3/(1.-point2) flat=y > plot.vpl
float dframe=1 frame increment in a movie
bool flat=y [y/n] if n, display perspective view
float frame1=0.5*(min+max)
int frame2=n1-1
int frame3=0 frame numbers for cube faces
float max= maximum function value
float min= minimum function value
int movie=0 0: no movie, 1: movie over axis 1, 2: axis 2, 3: axis 3
int n1pix=n1/point1+n3/(1.-point1) number of vertical pixels
int n2pix=n2/point2+n3/(1.-point2) number of horizontal pixels
int orient=1 function orientation
float point1=0.5 fraction of the vertical axis for front face
float point2=0.5 fraction of the horizontal axis for front face

sfgraph[edit]

Graph plot.
sfgraph < in.rsf symbolsz= pclip=100. transp=n symbol= > plot.vpl
Run "sfdoc stdplot" for more parameters.
float pclip=100. clip percentile
string symbol= if set, plot with symbols instead of lines
floats symbolsz= symbol size (default is 2) [n2]
bool transp=n [y/n] if y, transpose the axes

sfgrey3[edit]

Generate 3-D cube plot.
sfgrey3 < in.rsf point1=0.5 point2=0.5 frame1=0 frame2=n2-1 frame3=0 movie=0 dframe=1 n1pix=n1/point1+n3/(1.-point1) n2pix=n2/point2+n3/(1.-point2) flat=y scalebar=n minval= maxval= barreverse=n nreserve=8 bar= color= > plot.vpl
Requires an "unsigned char" input (the output of sfbyte).
string bar= file for scalebar data
bool barreverse=n [y/n] if y, go from small to large on the bar scale
string color= color scheme (default is i)
int dframe=1 frame increment in a movie
bool flat=y [y/n] if n, display perspective view
int frame1=0
int frame2=n2-1
int frame3=0 frame numbers for cube faces
float maxval= maximum value for scalebar (default is the data maximum)
float minval= minimum value for scalebar (default is the data minimum)
int movie=0 0: no movie, 1: movie over axis 1, 2: axis 2, 3: axis 3
int n1pix=n1/point1+n3/(1.-point1) number of vertical pixels
int n2pix=n2/point2+n3/(1.-point2) number of horizontal pixels
int nreserve=8 reserved colors
float point1=0.5 fraction of the vertical axis for front face
float point2=0.5 fraction of the horizontal axis for front face
bool scalebar=n [y/n] if y, draw scalebar

Different color schemes are available for sfgrey and sfgrey3. Examples are in the book at rsf/rsf/sfgrey.

sfgrey[edit]

Generate raster plot.
sfgrey < in.rsf > out.rsf bar=bar.rsf transp=y yreverse=y xreverse=n gpow= phalf= clip= pclip= gainstep=0.5+n1/256. allpos=n bias=0. polarity=n verb=n scalebar=n minval= maxval= barreverse=n wantframenum=(bool) (n3 > 1) nreserve=8 gainpanel= bar= color= > (plot.vpl | char.rsf)
Can input char values.
If called "byte", outputs char values.

Run "sfdoc stdplot" for more parameters.
bool allpos=n [y/n] if y, assume positive data
string bar= file for scalebar data
bool barreverse=n [y/n] if y, go from small to large on the bar scale
float bias=0. subtract bias from data
float clip=
string color= color scheme (default is i)
string gainpanel= gain reference: 'a' for all, 'e' for each, or number
int gainstep=0.5+n1/256. subsampling for gpow and clip estimation
float gpow=
float maxval= maximum value for scalebar (default is the data maximum)
float minval= minimum value for scalebar (default is the data minimum)
int nreserve=8 reserved colors
float pclip= data clip percentile (default is 99)
float phalf= percentage for estimating gpow
bool polarity=n [y/n] if y, reverse polarity (white is high by default)
bool scalebar=n [y/n]
bool transp=y [y/n] if y, transpose the display axes
bool verb=n [y/n] verbosity flag
bool wantframenum=(bool) (n3 > 1) [y/n] if y, display third axis position in the corner
bool xreverse=n [y/n] if y, reverse the horizontal axis
bool yreverse=y [y/n] if y, reverse the vertical axis

Different color schemes are available, and examples are in the book at rsf/rsf/sfgrey.

sfplas[edit]

Plot Assembler - convert ascii to vplot.
sfplas

sfpldb[edit]

Plot Debugger - convert vplot to ascii.
sfpldb

sfplotrays[edit]

Plot rays.
sfplotrays frame=frame.rsf nt=n1*n2 jr=1 frame= < rays.rsf > plot.vpl
Run "sfdoc stdplot" for more parameters.
string frame=
int jr=1 skip rays
int nt=n1*n2 maximum ray length

sfthplot[edit]

Hidden-line surface plot.
sfthplot < in.rsf uflag=y dflag=y alpha=45. titlsz=9 axissz=6 plotfat=0 titlefat=2 axisfat=2 plotcolup=VP_YELLOW plotcoldn=VP_RED axis=y axis1=y axis2=y axis3=y clip=0. pclip=100. gainstep=0.5+nx/256. bias=0. dclip=1. norm=y xc=1.5 zc=3 ratio=5. zmax= zmin= sz=6. label#= unit#= tpow=0 epow=0 gpow=1 title= > plot.vpl
float alpha=45. alpha| < 89
bool axis=y [y/n]
bool axis1=y [y/n]
bool axis2=y [y/n]
bool axis3=y [y/n] plot axis
int axisfat=2 axes fatness
int axissz=6 axes size
float bias=0. subtract bias from data
float clip=0. data clip
float dclip=1. change the clip: clip *= dclip
bool dflag=y [y/n] if y, plot down side of the surface
float epow=0 exponential gain
int gainstep=0.5+nx/256. subsampling for gpow and clip estimation
float gpow=1 power gain
string label#= label on #-th axis
bool norm=y [y/n] normalize by the clip
float pclip=100. data clip percentile
int plotcoldn=VP_RED color of the lower side
int plotcolup=VP_YELLOW color of the upper side
int plotfat=0 line fatness
float ratio=5. plot adjustment
float sz=6. vertical scale
string title=
int titlefat=2 title fatness
int titlsz=9 title size
string tpow=0 time power gain
bool uflag=y [y/n] if y, plot upper side of the surface
string unit#= unit on #-th axis
float xc=1.5
float zc=3 lower left corner of the plot
float zmax=
float zmin=

sfwiggle[edit]

Plot data with wiggly traces.
sfwiggle < in.rsf xpos=xpos.rsf xmax= xmin= poly=n fatp=1 xmask=1 ymask=1 pclip=98. zplot=0.75 clip=0. seemean=n verb=n transp=n yreverse=n xreverse=n xpos= > plot.vpl
Run "sfdoc stdplot" for more parameters.
float clip=0. data clip (estimated from pclip by default
int fatp=1
float pclip=98. clip percentile
bool poly=n [y/n]
bool seemean=n [y/n] if y, plot mean lines of traces
bool transp=n [y/n] if y, transpose the axes
bool verb=n [y/n] verbosity flag
int xmask=1
float xmax= maximum trace position (if using xpos)
float xmin= minimum trace position (if using xpos)
string xpos= optional header file with trace positions
bool xreverse=n [y/n] if y, reverse the horizontal axis
int ymask=1
bool yreverse=n [y/n] if y, reverse the vertical axis
float zplot=0.75

Plotting programs (development)[edit]

sfplsurf[edit]

sfplsurf utilizes PLplot's surface rendering capabilities. Output is dumped to stdout in VPLOT format, so it can easily be used like sfgrey or other plotting programs. It also supports animation, if n3 > 1 in the input file. A SConstruct usage example can be found below. A movie of the output is available as well.

from rsf.proj import *

# x & y dimensions
o1=-2
o2=-2
n1=41
n2=41
d1=0.1
d2=0.1
# z dimension
o3=-1
n3=21
d3=0.1

Flow('membrane',None,
    '''
    math o1=%g o2=%g n1=%d n2=%d d1=%g d2=%g
          o3=%g n3=%d d3=%g
          output="x3*cos(x1*x1+x2*x2)*exp(-0.1*(x1*x1+x2*x2))"
    ''' % (o1,o2,n1,n2,d1,d2,o3,n3,d3))

Result('membrane',
      '''
      plsurf title="Membrane" mesh=n color=j
              minval=%g maxval=%g
      ''' % (o3,o3 + d3*(n3-1)))

End()

system/generic programs[edit]

sfremap1[edit]

1-D ENO interpolation.
sfremap1 < in.rsf > out.rsf pattern=pattern.rsf n1=n1 d1=d1 o1=o1 order=3
float d1=d1 Output sampling
int n1=n1 Number of output samples
float o1=o1 Output origin
int order=3 Interpolation order
string pattern= auxiliary input file name

To give an example of usage, we will create an input for sfremap1 with:

sfmath n1=11 n2=11 d1=1 d2=1 o1=-5 o2=-5 output="x1*x1+x2*x2" > inp2remap1.rsf

Let us interpolate the data across both dimensions, then display it:

< inp2remap1.rsf sfremap1 n1=1001 d1=0.01 | sftransp | \
sfremap1 n1=1001 d1=0.01 | sftransp | sfgrey allpos=y | sfpen

The comparison with the uninterpolated data ( < inp2remap1.rsf sfgrey allpos=y | sfpen ) is quite telling.

system/seismic programs[edit]

sfstretch[edit]

Stretch of the time axis.
sfstretch < in.rsf > out.rsf datum=dat.rsf inv=n dens=1 v0= half=y delay= tdelay= hdelay= nout=dens*n1 extend=4 mute=0 maxstr=0 rule=
file datum= auxiliary input file name
float delay= time delay for rule=lmo
int dens=1 axis stretching factor
int extend=4 trace extension
bool half=y [y/n] if y, the second axis is half-offset instead of full offset
float hdelay= offset delay for rule=rad
bool inv=n [y/n] if y, do inverse stretching
float maxstr=0 maximum stretch
int mute=0 tapering size
int nout=dens*n1 output axis length (if inv=n)
string rule= Stretch rule:
n - normal moveout (nmostretch), default
l - linear moveout (lmostretch)
L - logarithmic stretch (logstretch)
2 - t^2 stretch (t2stretch)
c - t^2 chebyshev stretch (t2chebstretch)
r - radial moveout (radstretch)
d - datuming (datstretch)
float tdelay= time delay for rule=rad
float v0= moveout velocity

sfstretch rule=d (aka sfdatstretch) can be used to apply statics. Here is a synthetic example, courtesy of Alessandro Frigeri:

# generate a dataset with 'flat' signals
sfmath n1=200 n2=100 output="sin(0.5*x1)" type=float > scan.rsf

# generate a sinusoidal elevation correction
sfmath n1=100 output="3*sin(x1)" type=float > statics.rsf

# apply statics, producing a 'wavy' output.
sfstretch < scan.rsf > out.rsf datum=statics.rsf rule=d

user/fomels programs[edit]

sfpick[edit]

Automatic picking from semblance-like panels.
sfpick < scn.rsf > pik.rsf vel0=o2 niter=100 an=1. gate=3 smooth=y rect#=(1,1,...) rect1=1 rect2=1 ...
rectN defines the size of the smoothing stencil in N-th dimension.

Theory in Appendix B of:
S. Fomel, 2009,
Velocity analysis using AB semblance: Geophysical Prospecting, v. 57, 311-321.
Reproducible version in RSFSRC/book/jsg/avo
float an=1. axes anisotropy
int gate=3 picking gate
int niter=100 number of iterations
int rect#=(1,1,...) smoothing radius on #-th axis
bool smooth=y [y/n] if apply smoothing
float vel0=o2 surface velocity

Short description of the algorithm:

  1. Start from the top (first time slice), pick an initial (source) point, evaluate all other points with the direct traveltime.
  2. At each grid point at the next level, find the traveltime to points at the previous level, add the traveltimes from the previous level, and select minimum. The aperture (gate= parameter in sfpick) limits the search radius.
  3. Repeat step 2 until reaching the bottom.
  4. Pick the minimum traveltime at the bottom and track the ray back to the source by following the traveltime gradient direction.
  5. Postprocessing (smooth= parameter in sfpick): smooth the picked ray path using shaping regularization.

Many people have discovered and rediscovered the algorithm. The best reference is probably V. Meshbey, E. Ragoza, D. Kosloff, U. Egozi, and D. Wexler, 2002, Three-dimensional Travel-time Calculation Based on Fermat's Principle: Pure and Applied Geophysics, v. 159, 1563-1582.

user/ivlad programs[edit]

sfprep4plot[edit]

Resamples a 2-D dataset to the desired picture resolution, with antialias
sfprep4plot inp= out= verb=n h=none w=none unit= ppi= prar=y
Only one of the h and w parameters needs to be specified.
If prar=n, no action will be taken on the axis for which h/w was not specified
If prar=y and only one par (h or w) is specified, the picture will scale
along both axes until it is of the specified dimension.
int h=none output height
string inp= input file
string out= output file
int ppi= output resolution (px/in). Necessary when unit!=px
bool prar=y [y/n] if y, PReserve Aspect Ratio of input
string unit= unit of h and w. Can be: px(default), mm, cm, in
bool verb=n [y/n] if y, print system commands, outputs
int w=none output width

For a figure that does not need the aspect ratio preserved, and needs to fill a 1280x1024 projector display:

sfprep4plot inp=file1.rsf out=file2.rsf w=1280 h=1024 prar=n

For a print figure that has to fit in a 6x8in box at a resolution of 250 dpi, preserving the aspect ratio:

sfprep4plot inp=file1.rsf out=file2.rsf w=6 h=8 unit=in ppi=250

A comparison of images before and after the application of sfprep4plot, courtesy of Joachim Mispel, is shown below:

sfcsv2rsf[edit]

Convert a delimited-text ASCII file to RSF binary floating point or int.
sfcsv2rsf help=n delimiter=, dtype=float verb=n debug=n trunc=n o1=0. o2=0. d1=1. d2=1. unit1=unknown unit2=unknown label1=unknown label2=unknown
Zeros will be added if number of elements is not the same in each row.
n1 and n2 are computed automatically. For consistency with sfdisfil and
sfmatmult, output is C-style order (row-first), i.e. rows in input file
become dimension-1 columns in output. Output encoding is native.
float d1=1.
float d2=1.
bool debug=n [y/n] Extra verbosity for debugging
string delimiter=, Separator between values in input file
string dtype=float Input type
bool help=n [y/n]
string label1=unknown
string label2=unknown
float o1=0.
float o2=0.
bool trunc=n [y/n] Truncate or add zeros if nr elems in rows differs
string unit1=unknown
string unit2=unknown
bool verb=n [y/n] Whether to echo n1, n2, infill/truncation

A small usage example follows below. First, create an input file:

$ echo -e '5,6,8,9.2\n11,124,5,0,1' | tee file.csv
5,6,8,9.2
11,124,5,0,1

You may notice that the number of values in each row is different.

Run sfcsv2rsf. Notice that no options are needed. By default, zeros will be appended to make the rows equal in length:

$ <file.csv sfcsv2rsf > junk.rsf ; sfdisfil < junk.rsf 
   0:             5            6            8          9.2            0
   5:            11          124            5            0            1

Notice that sfdisfil displays in column order (i.e. matrix is transposed if the number of rows is right). The dimensions of the file are transposed on disk:

$ sfin junk.rsf
junk.rsf:
    in="/data/path/junk.rsf@"
    esize=4 type=float form=native 
    n1=5           d1=1           o1=0          unit1="unknown" 
    n2=2           d2=1           o2=0          unit2="unknown" 
	10 elements 40 bytes

Depending on your needs, you may want to run the output through sftransp. However, if creating an input for sfmatmult, this will not be necessary, because sfmatmult is made to work with matrices that are displayed with sfdisfil, and takes as input a transpose matrix.

Pipes can be used, of course, to skip the creation of intermediary files:

$ <file.csv sfcsv2rsf | sfdisfil
   0:             5            6            8          9.2            0
   5:            11          124            5            0            1

Note that since this program does not need any arguments (just stdin and stdout), it will not display the man page when called with no arguments. In order to consult the automatically generated documentation, you need to pass the option help=y .

user/jennings programs[edit]

sfsizes[edit]

Display the size of RSF files.
sfsizes files=y human=n file1.rsf file2.rsf ...
Prints the element size, number of elements, and number of bytes
for a list of RSF files. Non-RSF files are ignored.
bool files=y [y/n] If y, print size of each file. If n, print only total.
bool human=n [y/n] If y, print human-readable file size. If n, print byte count.


This program computes the "theoretical" size in bytes of the data fork of RSF files. The actual space occupied on disk may be different and machine-dependent due to disk blocking factors, etc. This theoretical array size should be reproducible. It is also fast because the program only reads the RSF headers files, not the actual data.

For example, to get the total size of all RSF files in a directory, in human-readable format, without listing each file:

sfsizes files=n human=y *.rsf

This will also work because sfsizes simply skips any non-RSF file:

sfsizes files=n human=y *

sffiglist[edit]

Compare Vplot files in Fig and Lock directories
sffiglist figdir= lockdir= list= show=

Parameter figdir is path to Fig directory, default is ./Fig.


Parameter lockdir is path to Lock directory:
If figdir is in $RSFSRC/book/[book]/[chapter]/[section],
then default lockdir is $RSFFIGS/[book]/[chapter]/[section].
If figdir is not in $RSFSRC/book/[book]/[chapter]/[section],
then default lockdir is $RSFALTFIGS/[book]/[chapter]/[section].


Parameter list controls files to list, default is all.
Parameter show controls files to flip with sfpen, default is none.


list|show = none (No files, print only summary.)
list|show = diff (Files that are different, determined by sfvplotdiff.)
list|show = miss (Files missing from figdir or lockdir, and different files.)
list|show = all (All files.)


File list codes:
space indicates files that are the same.
- indicates file in lockdir that is missing from figdir.
+ indicates extra file in figdir that is missing from lockdir.
number is return code from sfvplotdiff indicating different files.

string figdir= fig directory, default = ./Fig
string list= how much to list [none,diff,miss,all], default = all
string lockdir= lock directory, default = lock counterpart of figdir
string show= how much to show [none,diff,miss,all], default = none


This tool lists Vplot files in the "Fig" and "Lock" directories and compares them using sfvplotdiff.

The Fig directory defaults to ./Fig and the Lock directory defaults to the corresponding directory where "scons lock" puts things, but either default can be overridden with the user parameters figdir and lockdir so that, for example, files in two different Fig directories can be compared.

The default for the Lock directory has some logic to look in $RSFFIGS when Fig is in $RSFSRC/book, or to look in $RSFALTFIGS when Fig is not in $RSFSRC/book because I like to keep two different Lock directories: one for stuff in book and another for my own stuff that is not in book. However, I tried to make the code default to reasonable things if any of these environment variables are not defined.

The tool gives a summary count of files that are the same, files that are different, files in Fig that are missing from Lock, and files in Lock that are missing from Fig.

The parameters list (default=all) and show (default=none) control which files are listed or "flipped" with sfpen. The file listing indicates which files are the same, which are different, and which are missing from Fig or Lock.

For example, to list all the Vplot files in Fig and Lock:

sffiglist list=all

To list all Vplot files and flip only files that are different:

sffiglist list=all show=diff

user/psava programs[edit]

sfawefd2d[edit]

acoustic time-domain FD modeling
sfawefd < Fwav.rsf vel=Fvel.rsf sou=Fsou.rsf rec=Frec.rsf wfl=Fwfl.rsf > Fdat.rsf den=Fden.rsf ompchunk=1 ompnth=0 verb=n snap=n free=n expl=n jdata=1 jsnap=nt nq1=sf_n(a1) nq2=sf_n(a2) oq1=sf_o(a1) oq2=sf_o(a2)
file den= auxiliary input file name
bool expl=n [y/n] "exploding reflector"
bool free=n [y/n] free surface flag
int jdata=1
int jsnap=nt save wavefield every *jsnap* time steps
int nq1=sf_n(a1)
int nq2=sf_n(a2)
int ompchunk=1 OpenMP data chunk size
int ompnth=0 OpenMP available threads
float oq1=sf_o(a1)
float oq2=sf_o(a2)
file rec= auxiliary input file name
bool snap=n [y/n] wavefield snapshots flag
file sou= auxiliary input file name
file vel= auxiliary input file name
bool verb=n [y/n] verbosity flag
file wfl= auxiliary output file name

Below, we will demonstrate an example of a model with nx=nz=200 and dx=dz=4m (size: 800x800m). There are two layers: the first is 100x200 samples in (z,x), and the velocity is 1500m/s; the second layer has the same dimension, and the velocity is 3000m/s. The density is set to 1 for the whole grid. A source and a receiver are co-located at x=400 and z=100. The full wavefield for the entire model aperture will be saved every 10th time step.

  1. Velocity model:
    sfspike > Fvel.rsf mag=1500,3000 nsp=2 k1=1,101 l1=100,200 d1=4 d2=4 \
    label1=z label2=x n1=200 n2=200 o1=2 o2=2 unit1=m unit2=m
  2. Density model:
    sfspike > Fden.rsf mag=1 nsp=1 k1=1 l1=200 d1=4 d2=4 label1=z \
    label2=x n1=200 n2=200 o1=2 o2=2 unit1=m unit2=m
  3. Source position (x,z):
    sfspike n1=2 nsp=2 k1=1,2 mag=400,100 o1=0 o2=0 > Fsou.rsf
  4. Receiver position (x,z):
    sfspike n1=2 nsp=2 k1=1,2 mag=400,100 o1=0 o2=0 > Frec.rsf
  5. Source wavelet:
    sfspike nsp=1 n1=2000 d1=0.0005 k1=200 | sfricker1 frequency=20 |\
    sftransp > Fwav.rsf
  6. Creating data at specified receiver + saving full wavefield every 10th step:
    sfawefd2d < Fwav.rsf vel=Fvel.rsf sou=Fsou.rsf rec=Frec.rsf wfl=Fwfl.rsf \
    den=Fden.rsf > Fdat.rsf verb=y free=y expl=y snap=y dabc=y jdata=1 jsnap=10
    echo 'label1=z unit1=m label2=x unit2=m' >> Fwfl.rsf
  7. View the wavefield movie:
    < Fwfl.rsf sfgrey gainpanel=a pclip=99 color=j scalebar=y | sfpen
  8. View a wavefield snapshot:
    < Fwfl.rsf sfwindow f3=80 n3=1 |\
    sfgrey pclip=99 color=j title='snapshot at t=0.4s' |\
    sfpen
  9. View the data recorded at the receiver:
    < Fdat.rsf sfwindow |\
    sfgraph title='Data recorded at receiver' unit2='' label2=amplitude |\
    sfpen
sfawefd wavefield screenshot
sfawefd data screenshot

Attention: time steps that are too large can result in numerical instability.

sfsrmig3[edit]

3-D S/R migration with extended SSF
sfsrmig3 slo=Fs_s.rsf sls=Fs_r.rsf < Fw_s.rsf rwf=Fw_r.rsf > Fi.rsf cig=Fc.rsf ompchunk=1 ompnth=0 verb=y eps=0.01 twoway=n nrmax=1 dtmax=0.004 pmx=0 pmy=0 tmx=0 tmy=0 vpvs=1. hsym=n nht=1 oht=0 dht=0.1 nht=1 oht=0 dht=0.1 hsym=n nhh=1 ohh=0 dhh=0.1 nha=180 oha=0 dha=2.0 nhb=180 ohb=0 dhb=2.0 itype=
file cig= auxiliary output file name
float dha=2.0
float dhb=2.0
float dhh=0.1
float dht=0.1
float dtmax=0.004 max time error
float eps=0.01 stability parameter
bool hsym=n [y/n]
string itype= imaging condition type
o = zero lag (default)
e = extended
x = space-lags
h = space-lags magnitude
t = time-lag
int nha=180
int nhb=180
int nhh=1
int nht=1
int nrmax=1 max number of refs
float oha=0
float ohb=0
float ohh=0
float oht=0
int ompchunk=1 OpenMP data chunk size
int ompnth=0 OpenMP available threads
int pmx=0 padding on x
int pmy=0 padding on y
file rwf= auxiliary input file name
file slo= auxiliary input file name
string sls= auxiliary input file name
int tmx=0 taper on x
int tmy=0 taper on y
bool twoway=n [y/n] two-way traveltime
bool verb=y [y/n] verbosity flag
float vpvs=1. Vp/Vs ratio

This program performs 3-D and 2-D shot-record (a.k.a. shot-profile) migration with an extended Split-Step Fourier (SSF) extrapolator with multiple reference velocities (hence "extended"). It takes as input a shot wavefield (stdin), receiver wavefield (rwf=) and slowness model (slo=). Outputs are an image (stdout) and a cube of Common Image Gathers (cig=). An important parameter is nrmax, the number of reference velocities. Its default value is 1, but it should be 5 or so for reasonable results. It is also good to specify nonzero taper values (tmx and, for 3-D, tmy as well). The values of padding parameters pmx and pmy are split in two by the program, i.e., if your data x-axis is 501-points long, specify pmx=11 to get a value of 512 that will result in fast Fourier Transforms.

The program will also migrate converted-wave data if a file with the S-wave slowness model (sls=) is provided.

The vpvs parameter is only used when itype=h. Do not specify a vpvs value unless you know really well what you are doing.

Usage example[edit]

The commands below, slightly modified from RSFSRC/book/data/sigsbee/ptest, show how to prepare the Sigsbee 2A data and velocity for migration.

Convert input data (shots) from SEG-Y to RSF:

sfsegyread tape=sigsbee2a_nfs.segy tfile=tdata.rsf hfile=/dev/null bfile=/dev/null > ddata.rsf

Convert trace headers to float (required by sfheadermath):

< tdata.rsf sfdd type=float > trchdr.rsf

Shot positions:

< trchdr.rsf sfheadermath output="fldr + 10925/150" | sfwindow squeeze=y > tsi.rsf

Extract offset positions from the trace header files, eliminate length-1 axis, scale, and create a header for binning (required by sfintbin):

< trchdr.rsf sfheadermath output="offset" |\
sfwindow squeeze=y |\
sfmath output="input/75" |\
sfcat axis=2 space=n tsi.rsf |\
sftransp |\
sfdd type=int > tos.rsf

Binning and muting:

< ddata.rsf sfintbin head=tos.rsf xkey=0 ykey=1 |\
sfput label1=Time unit1=s d2=0.075 o2=0.0 label2=hx d3=0.150 o3=10.925 label3=sx |\
sfmutter half=false t0=1.0 v0=6.0 |\
sfput d2=0.02286 o2=0 unit2=km d3=0.04572 o3=3.32994 unit3=km > shots.rsf

Keeping only 20 shots so that this 1-node job will not take forever, FFT-ing, decimating frequency slices (same as shortening the time axis), and creating y and hy axes of length 1:

< shots.rsf sfwindow n3=20 f3=10 j3=20 |\
sffft1 |\
sfwindow n1=200 min1=1 j1=3 |\
sfspray axis=3 n=1 o=0 d=1 label=hy |\
sfspray axis=5 n=1 o=0 d=1 label=sy > rfft.rsf

The dimensions of the cube thus created are:

$ sfin rfft.rsf trail=n
rfft.rsf:
    in="/var/tmp/rfft.rsf@"
    esize=8 type=complex form=native
    n1=200         d1=0.25        o1=1          label1="Frequency" unit1="Hz"
    n2=348         d2=0.02286     o2=0          label2="hx" unit2="km"
    n3=1           d3=1           o3=0          label3="hy" unit3="km"
    n4=20          d4=0.9144      o4=3.78714    label4="sx" unit4="km"
        1392000 elements 11136000 bytes

Create the source wavelet (limited to the same frequency band as the data) and Fourier transform it:

sfspike k1=1 n1=1500 d1=0.008 |\
sfbandpass flo=15 fhi=25 |\
sffft1 |\
sfwindow n1=200 min1=1 j1=3 |\
sfput label1=freq > sfft.rsf

This creates a frequency-domain wavelet:

$ sfin sfft.rsf
sfft.rsf:
    in="/var/tmp/sfft.rsf@"
    esize=8 type=complex form=native
    n1=200         d1=0.25        o1=1          label1="freq" unit1="Hz"
        200 elements 1600 bytes

Create "synched" source and receiver wavefields with srsyn from wavelet and data frequency slices. The receiver and shot frequency slices are "placed" at the right location and padded with zeros up to the x-axis dimension specified below.

< rfft.rsf sfsrsyn nx=1067 dx=0.02286 ox=3.05562 wav=sfft.rsf swf=swav.rsf > rwav.rsf

This creates frequency slices ready for migration for both source and receiver, only axis 1 (frequency) must become axis 3, for both datasets:

< swav.rsf sftransp plane=12 | sftransp plane=23 > stra.rsf
< rwav.rsf sftransp plane=12 | sftransp plane=23 > rtra.rsf

This creates a surface receiver wavefield ready for input to migration. Axis 4 is the shot number. The values of axis 4 are arbitrary because each shot has been padded with zeros so that it covers the entire velocity model. Therefore, the aperture of the downward continuation for each shot will be as large as that of the whole survey.

sfin trail=n rtra.rsf
rtra.rsf:
    in="/var/tmp/rtra.rsf@"
    esize=8 type=complex form=native
    n1=1067        d1=0.02286     o1=3.05562    label1="x" unit1="km"
    n2=1           d2=1           o2=0          label2="y" unit2="km"
    n3=200         d3=0.25        o3=1          label3="w" unit3="Hz"
    n4=20          d4=1           o4=0          label4="e" unit4="km"
        4268000 elements 34144000 bytes

Convert the velocity model from SEG-Y to RSF, decimate, convert from feet to km, transpose, convert to slowness, and insert an additional axis:

sfsegyread tape=sigsbee2a_migvel.sgy tfile=/dev/null hfile=/dev/null bfile=/dev/null |\
sfput o1=0 d1=0.00762 label1=z unit1=km o2=3.05562 d2=0.01143 label2=x unit2=km |\
sfwindow j1=4 j2=2 |\
sfscale rscale=0.0003048 |\
sftransp |\
sfmath output="1/input" |\
sfspray axis=2 n=1 d=1 o=0 |\
sfput label2=y > slow.rsf

This creates a slowness file ready for input to migration, with an x-axis identical to the x-axis of the wavefield files:

$ sfin slow.rsf
slow.rsf:
    in="/var/tmp/slow.rsf@"
    esize=4 type=float form=native
    n1=1067        d1=0.02286     o1=3.05562    label1="x" unit1="km"
    n2=1           d2=1           o2=0          label2="y" unit2="km"
    n3=301         d3=0.03048     o3=0          label3="z" unit3="km"
        321167 elements 1284668 bytes

Finally, the migration command (for a 4-processor machine, hence the ompnth value). We choose not to compute any image gathers (itype=o), but due to the construction of the program we still have to explicitly assign the cig tag, or else an RSF file with the name of the tag and no rsf extension will be created:

< stra.rsf sfsrmig3 nrmax=20 dtmax=5e-05 eps=0.01 verb=y ompnth=4 \
tmx=16 rwf=rtra.rsf slo=slow.rsf itype=o cig=/dev/null > img.rsf

The migration of 20 shots takes approximately three hours on a 4-processor machine (1 shot=9 minutes). Without the frequency slice decimation by a factor of 3 and the depth axis decimation by a factor of 4, it would have taken twelve times as much. The resulting image has a y-axis of length 1:

$ sfin img.rsf trail=n
img.rsf:
    in="/var/tmp/img.rsf@"
    esize=4 type=float form=native
    n1=1067        d1=0.02286     o1=3.05562    label1="x" unit1="km"
    n2=1           d2=1           o2=0          label2="y" unit2="km"
    n3=301         d3=0.03048     o3=0          label3="z" unit3="km"
        321167 elements 1284668 bytes

To properly visualize the image, we need to eliminate the axis of length 1, then transpose the x and z axes to their natural position:

<img.rsf sfwindow squeeze=y | sftransp | sfgrey > img.vpl

References[edit]

  1. Claerbout, J., 1998, Multidimensional recursive filters via a helix: Geophysics, 63, 1532--1541.
  2. Claerbout, J., 1998, Multidimensional recursive filters via a helix: Geophysics, 63, 1532--1541.
  3. Barry, K.M., Cavers, D.A., and Kneale, C.W. 1975. Recommended standards for digital tape formats. Geophysics, 40, no. 02, 344–352.
  4. Norris, M.W., Faichney, A.K., Eds. 2001. SEG Y rev1 Data Exchange format. Society of Exploration Geophysicists, Tulsa, OK, 45 pp.