Editing
Guide to programming with madagascar
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
<center><font size="-1">''This page was created from the LaTeX source in [https://github.com/ahay/src/blob/master/book/rsf/rsf/demo.tex book/rsf/rsf/demo.tex] using [[latex2wiki]]''</font></center> This guide demonstrates a simple time-domain finite-differences modeling code in RSF. ==Introduction== This section presents time-domain finite-difference modeling <ref>"Hello world" of seismic imaging.</ref> written with the RSF library. The program is demonstrated with the C, C++ and Fortran 90 interfaces. The acoustic wave-equation <center><math> \Delta U - \frac{1}{v^2} \frac{\partial^2 U}{\partial t^2} = f(t) </math></center> can be written as <center><math> \left[ \Delta U - f(t) \right] v^2 = \frac{\partial^2 U}{\partial t^2} \;. </math></center> <math>\Delta</math> is the Laplacian symbol, <math>f(t)</math> is the source wavelet, <math>v</math> is the velocity, and <math>U</math> is a scalar wavefield. A discrete time-step involves the following computations: <center><math> U_{i+1} = \left[ \Delta U -f(t) \right] v^2 \Delta t^2 + 2 U_{i} - U_{i-1} \;, </math></center> where <math>U_{i-1}</math>, <math>U_{i}</math> and <math>U_{i+1}</math> represent the propagating wavefield at various time steps. ==C program== [[Image:wavec.png|frame|center|Wave propagation snapshot.]] ==C program== <syntaxhighlight lang="c"> /* time-domain acoustic FD modeling */ #include <rsf.h> int main(int argc, char* argv[]) { /* Laplacian coefficients */ float c0=-30./12.,c1=+16./12.,c2=- 1./12.; bool verb; /* verbose flag */ sf_file Fw=NULL,Fv=NULL,Fr=NULL,Fo=NULL; /* I/O files */ sf_axis at,az,ax; /* cube axes */ int it,iz,ix; /* index variables */ int nt,nz,nx; float dt,dz,dx,idx,idz,dt2; float *ww,**vv,**rr; /* I/O arrays*/ float **um,**uo,**up,**ud;/* tmp arrays */ sf_init(argc,argv); if(! sf_getbool("verb",&verb)) verb=0; /* verbose flag */ /* setup I/O files */ Fw = sf_input ("in" ); Fo = sf_output("out"); Fv = sf_input ("vel"); Fr = sf_input ("ref"); /* Read/Write axes */ at = sf_iaxa(Fw,1); nt = sf_n(at); dt = sf_d(at); az = sf_iaxa(Fv,1); nz = sf_n(az); dz = sf_d(az); ax = sf_iaxa(Fv,2); nx = sf_n(ax); dx = sf_d(ax); sf_oaxa(Fo,az,1); sf_oaxa(Fo,ax,2); sf_oaxa(Fo,at,3); dt2 = dt*dt; idz = 1/(dz*dz); idx = 1/(dx*dx); /* read wavelet, velocity & reflectivity */ ww=sf_floatalloc(nt); sf_floatread(ww ,nt ,Fw); vv=sf_floatalloc2(nz,nx); sf_floatread(vv[0],nz*nx,Fv); rr=sf_floatalloc2(nz,nx); sf_floatread(rr[0],nz*nx,Fr); /* allocate temporary arrays */ um=sf_floatalloc2(nz,nx); uo=sf_floatalloc2(nz,nx); up=sf_floatalloc2(nz,nx); ud=sf_floatalloc2(nz,nx); for (ix=0; ix<nx; ix++) { for (iz=0; iz<nz; iz++) { um[ix][iz]=0; uo[ix][iz]=0; up[ix][iz]=0; ud[ix][iz]=0; } } /* MAIN LOOP */ if(verb) fprintf(stderr," "); for (it=0; it<nt; it++) { if(verb) fprintf(stderr,"\b\b\b\b\b %d",it); /* 4th order laplacian */ for (ix=2; ix<nx-2; ix++) { for (iz=2; iz<nz-2; iz++) { ud[ix][iz] = c0* uo[ix ][iz ] * (idx+idz) + c1*(uo[ix-1][iz ] + uo[ix+1][iz ])*idx + c2*(uo[ix-2][iz ] + uo[ix+2][iz ])*idx + c1*(uo[ix ][iz-1] + uo[ix ][iz+1])*idz + c2*(uo[ix ][iz-2] + uo[ix ][iz+2])*idz; } } /* inject wavelet */ for (ix=0; ix<nx; ix++) { for (iz=0; iz<nz; iz++) { ud[ix][iz] -= ww[it] * rr[ix][iz]; } } /* scale by velocity */ for (ix=0; ix<nx; ix++) { for (iz=0; iz<nz; iz++) { ud[ix][iz] *= vv[ix][iz]*vv[ix][iz]; } } /* time step */ for (ix=0; ix<nx; ix++) { for (iz=0; iz<nz; iz++) { up[ix][iz] = 2*uo[ix][iz] - um[ix][iz] + ud[ix][iz] * dt2; um[ix][iz] = uo[ix][iz]; uo[ix][iz] = up[ix][iz]; } } /* write wavefield to output */ sf_floatwrite(uo[0],nz*nx,Fo); } if(verb) fprintf(stderr,"\n"); exit (0); } </syntaxhighlight> #Declare input, output and auxiliary file tags: <tt>Fw</tt> for input wavelet, <tt>Fv</tt> for velocity, <tt>Fr</tt> for reflectivity, and <tt>Fo</tt> for output wavefield. <syntaxhighlight lang="c"> sf_file Fw=NULL,Fv=NULL,Fr=NULL,Fo=NULL; /* I/O files */ </syntaxhighlight> #Declare RSF cube axes: <tt>at</tt> time axis, <tt>ax</tt> space axis, <tt>az</tt> depth axis. \tiny <syntaxhighlight lang="c"> sf_axis at,az,ax; /* cube axes */ </syntaxhighlight> #Declare multi-dimensional arrays for input, output and computations. <syntaxhighlight lang="c"> float *ww,**vv,**rr; /* I/O arrays*/ </syntaxhighlight> #Open files for input/output. <syntaxhighlight lang="c"> Fw = sf_input ("in" ); Fo = sf_output("out"); Fv = sf_input ("vel"); Fr = sf_input ("ref"); </syntaxhighlight> #Read axes from input files; write axes to output file. <syntaxhighlight lang="c"> at = sf_iaxa(Fw,1); nt = sf_n(at); dt = sf_d(at); az = sf_iaxa(Fv,1); nz = sf_n(az); dz = sf_d(az); ax = sf_iaxa(Fv,2); nx = sf_n(ax); dx = sf_d(ax); sf_oaxa(Fo,az,1); sf_oaxa(Fo,ax,2); sf_oaxa(Fo,at,3); </syntaxhighlight> #Allocate arrays and read wavelet, velocity and reflectivity. <syntaxhighlight lang="c"> ww=sf_floatalloc(nt); sf_floatread(ww ,nt ,Fw); vv=sf_floatalloc2(nz,nx); sf_floatread(vv[0],nz*nx,Fv); rr=sf_floatalloc2(nz,nx); sf_floatread(rr[0],nz*nx,Fr); </syntaxhighlight> #Allocate temporary arrays. <syntaxhighlight lang="c"> um=sf_floatalloc2(nz,nx); uo=sf_floatalloc2(nz,nx); up=sf_floatalloc2(nz,nx); ud=sf_floatalloc2(nz,nx); </syntaxhighlight> #Loop over time. <syntaxhighlight lang="c"> for (it=0; it<nt; it++) { </syntaxhighlight> #Compute Laplacian: <math>\Delta U</math>. <syntaxhighlight lang="c"> for (ix=2; ix<nx-2; ix++) { for (iz=2; iz<nz-2; iz++) { ud[ix][iz] = c0* uo[ix ][iz ] * (idx+idz) + c1*(uo[ix-1][iz ] + uo[ix+1][iz ])*idx + c2*(uo[ix-2][iz ] + uo[ix+2][iz ])*idx + c1*(uo[ix ][iz-1] + uo[ix ][iz+1])*idz + c2*(uo[ix ][iz-2] + uo[ix ][iz+2])*idz; } } </syntaxhighlight> #Inject source wavelet: <math>\left[ \Delta U - f(t) \right]</math> <syntaxhighlight lang="c"> for (ix=0; ix<nx; ix++) { for (iz=0; iz<nz; iz++) { ud[ix][iz] -= ww[it] * rr[ix][iz]; } } </syntaxhighlight> #Scale by velocity: <math>\left[ \Delta U - f(t) \right] v^2</math> <syntaxhighlight lang="c"> for (ix=0; ix<nx; ix++) { for (iz=0; iz<nz; iz++) { ud[ix][iz] *= vv[ix][iz]*vv[ix][iz]; } } </syntaxhighlight> #Time step: <math>U_{i+1} = \left[ \Delta U -f(t) \right] v^2 \Delta t^2 + 2 U_{i} - U_{i-1}</math> <syntaxhighlight lang="c"> for (ix=0; ix<nx; ix++) { for (iz=0; iz<nz; iz++) { up[ix][iz] = 2*uo[ix][iz] - um[ix][iz] + ud[ix][iz] * dt2; um[ix][iz] = uo[ix][iz]; uo[ix][iz] = up[ix][iz]; } } </syntaxhighlight> \newpage ==C++ program== <syntaxhighlight lang="cpp"> // time-domain acoustic FD modeling #include <valarray> #include <iostream> #include <rsf.hh> #include <cub.hh> #include "vai.hh" using namespace std; int main(int argc, char* argv[]) { // Laplacian coefficients float c0=-30./12.,c1=+16./12.,c2=- 1./12.; sf_init(argc,argv);// init RSF bool verb; // vebose flag if(! sf_getbool("verb",&verb)) verb=0; // setup I/O files CUB Fw("in", "i"); Fw.headin(); //Fw.report(); CUB Fv("vel","i"); Fv.headin(); //Fv.report(); CUB Fr("ref","i"); Fr.headin(); //Fr.report(); CUB Fo("out","o"); Fo.setup(3); // Read/Write axes sf_axis at = Fw.getax(0); int nt = sf_n(at); float dt = sf_d(at); sf_axis az = Fv.getax(0); int nz = sf_n(az); float dz = sf_d(az); sf_axis ax = Fv.getax(1); int nx = sf_n(ax); float dx = sf_d(ax); Fo.putax(0,az); Fo.putax(1,ax); Fo.putax(2,at); Fo.headou(); float dt2 = dt*dt; float idz = 1/(dz*dz); float idx = 1/(dx*dx); // read wavelet, velocity and reflectivity valarray<float> ww( nt ); ww=0; Fw >> ww; valarray<float> vv( nz*nx ); vv=0; Fv >> vv; valarray<float> rr( nz*nx ); rr=0; Fr >> rr; // allocate temporary arrays valarray<float> um(nz*nx); um=0; valarray<float> uo(nz*nx); uo=0; valarray<float> up(nz*nx); up=0; valarray<float> ud(nz*nx); ud=0; // init ValArray Index counter VAI k(nz,nx); // MAIN LOOP if(verb) cerr << endl; for (int it=0; it<nt; it++) { if(verb) cerr << "\b\b\b\b\b" << it; // 4th order laplacian for (int ix=2; ix<nx-2; ix++) { for (int iz=2; iz<nz-2; iz++) { ud[k(iz,ix)] = c0* uo[ k(iz ,ix )] * (idx+idz) + c1*(uo[ k(iz ,ix-1)]+uo[ k(iz ,ix+1)]) * idx + c1*(uo[ k(iz-1,ix )]+uo[ k(iz+1,ix )]) * idz + c2*(uo[ k(iz ,ix-2)]+uo[ k(iz ,ix+2)]) * idx + c2*(uo[ k(iz-2,ix )]+uo[ k(iz+2,ix )]) * idz; } } // inject wavelet ud -= ww[it] * rr; // scale by velocity ud *= vv*vv; // time step up=(float)2 * uo - um + ud * dt2; um = uo; uo = up; // write wavefield to output output Fo << uo; } if(verb) cerr << endl; exit(0); } </syntaxhighlight> #Declare input, output and auxiliary file cubes (of type <tt>CUB</tt>). <syntaxhighlight lang="cpp"> CUB Fw("in", "i"); Fw.headin(); //Fw.report(); CUB Fv("vel","i"); Fv.headin(); //Fv.report(); CUB Fr("ref","i"); Fr.headin(); //Fr.report(); CUB Fo("out","o"); Fo.setup(3); </syntaxhighlight> #Declare, read and write RSF cube axes: <tt>at</tt> time axis, <tt>ax</tt> space axis, <tt>az</tt> depth axis. <syntaxhighlight lang="cpp"> sf_axis at = Fw.getax(0); int nt = sf_n(at); float dt = sf_d(at); sf_axis az = Fv.getax(0); int nz = sf_n(az); float dz = sf_d(az); sf_axis ax = Fv.getax(1); int nx = sf_n(ax); float dx = sf_d(ax); </syntaxhighlight> #Declare multi-dimensional <tt>valarrays</tt> for input, output and read data. <syntaxhighlight lang="cpp"> valarray<float> ww( nt ); ww=0; Fw >> ww; valarray<float> vv( nz*nx ); vv=0; Fv >> vv; valarray<float> rr( nz*nx ); rr=0; Fr >> rr; </syntaxhighlight> #Declare multi-dimensional <tt>valarrays</tt> for temporary storage. <syntaxhighlight lang="cpp"> valarray<float> um(nz*nx); um=0; valarray<float> uo(nz*nx); uo=0; valarray<float> up(nz*nx); up=0; valarray<float> ud(nz*nx); ud=0; </syntaxhighlight> #Initialize multidimensional <tt>valarray</tt> index counter (of type <tt>VAI</tt>). <syntaxhighlight lang="cpp"> VAI k(nz,nx); </syntaxhighlight> #Loop over time. <syntaxhighlight lang="cpp"> for (int it=0; it<nt; it++) { </syntaxhighlight> #Compute Laplacian: <math>\Delta U</math>. <syntaxhighlight lang="cpp"> for (int ix=2; ix<nx-2; ix++) { for (int iz=2; iz<nz-2; iz++) { ud[k(iz,ix)] = c0* uo[ k(iz ,ix )] * (idx+idz) + c1*(uo[ k(iz ,ix-1)]+uo[ k(iz ,ix+1)]) * idx + c1*(uo[ k(iz-1,ix )]+uo[ k(iz+1,ix )]) * idz + c2*(uo[ k(iz ,ix-2)]+uo[ k(iz ,ix+2)]) * idx + c2*(uo[ k(iz-2,ix )]+uo[ k(iz+2,ix )]) * idz; } } </syntaxhighlight> #Inject source wavelet: <math>\left[ \Delta U - f(t) \right]</math> <syntaxhighlight lang="cpp"> ud -= ww[it] * rr; </syntaxhighlight> #Scale by velocity: <math>\left[ \Delta U - f(t) \right] v^2</math> <syntaxhighlight lang="cpp"> ud *= vv*vv; </syntaxhighlight> #Time step: <math>U_{i+1} = \left[ \Delta U -f(t) \right] v^2 \Delta t^2 + 2 U_{i} - U_{i-1}</math> <syntaxhighlight lang="cpp"> up=(float)2 * uo - um + ud * dt2; um = uo; uo = up; </syntaxhighlight> ==Fortran 90 program== <syntaxhighlight lang="fortran"> ! time-domain acoustic FD modeling program AFDMf90 use rsf implicit none ! Laplacian coefficients real :: c0=-30./12.,c1=+16./12.,c2=- 1./12. logical :: verb ! verbose flag type(file) :: Fw,Fv,Fr,Fo ! I/O files type(axa) :: at,az,ax ! cube axes integer :: it,iz,ix ! index variables integer :: nt,nz,nx real :: dt,dz,dx real :: idx,idz,dt2 real, allocatable :: vv(:,:),rr(:,:),ww(:) ! I/O arrays real, allocatable :: um(:,:),uo(:,:),up(:,:),ud(:,:) ! tmp arrays call sf_init() ! init RSF call from_par("verb",verb,.false.) ! setup I/O files Fw=rsf_input ("in") Fv=rsf_input ("vel") Fr=rsf_input ("ref") Fo=rsf_output("out") ! Read/Write axes call iaxa(Fw,at,1); nt = at%n; dt = at%d call iaxa(Fv,az,1); nz = az%n; dz = az%d call iaxa(Fv,ax,2); nx = ax%n; dx = ax%d call oaxa(Fo,az,1) call oaxa(Fo,ax,2) call oaxa(Fo,at,3) dt2 = dt*dt idz = 1/(dz*dz) idx = 1/(dx*dx) ! read wavelet, velocity & reflectivity allocate(ww(nt)); call rsf_read(Fw,ww) allocate(vv(nz,nx)); call rsf_read(Fv,vv) allocate(rr(nz,nx)); call rsf_read(Fr,rr) ! allocate temporary arrays allocate(um(nz,nx)); um=0. allocate(uo(nz,nx)); uo=0. allocate(up(nz,nx)); up=0. allocate(ud(nz,nx)); ud=0. ! MAIN LOOP do it=1,nt if(verb) write (0,*) it ud(3:nz-2,3:nx-2) = & c0* uo(3:nz-2,3:nx-2) * (idx + idz) + & c1*(uo(3:nz-2,2:nx-3) + uo(3:nz-2,4:nx-1))*idx + & c2*(uo(3:nz-2,1:nx-4) + uo(3:nz-2,5:nx ))*idx + & c1*(uo(2:nz-3,3:nx-2) + uo(4:nz-1,3:nx-2))*idz + & c2*(uo(1:nz-4,3:nx-2) + uo(5:nz ,3:nx-2))*idz ! inject wavelet ud = ud - ww(it) * rr ! scale by velocity ud= ud *vv*vv ! time step up = 2*uo - um + ud * dt2 um = uo uo = up ! write wavefield to output call rsf_write(Fo,uo) end do call exit(0) end program AFDMf90 </syntaxhighlight> #Declare input, output and auxiliary file tags. <syntaxhighlight lang="fortran"> type(file) :: Fw,Fv,Fr,Fo ! I/O files </syntaxhighlight> #Declare RSF cube axes: <tt>at</tt> time axis, <tt>ax</tt> space axis, <tt>az</tt> depth axis. <syntaxhighlight lang="fortran"> type(axa) :: at,az,ax ! cube axes </syntaxhighlight> #Declare multi-dimensional arrays for input, output and computations. <syntaxhighlight lang="fortran"> real, allocatable :: vv(:,:),rr(:,:),ww(:) ! I/O arrays real, allocatable :: um(:,:),uo(:,:),up(:,:),ud(:,:) ! tmp arrays </syntaxhighlight> #Open files for input/output. <syntaxhighlight lang="fortran"> Fw=rsf_input ("in") Fv=rsf_input ("vel") Fr=rsf_input ("ref") Fo=rsf_output("out") </syntaxhighlight> #Read axes from input files; write axes to output file. <syntaxhighlight lang="fortran"> call iaxa(Fw,at,1); nt = at%n; dt = at%d call iaxa(Fv,az,1); nz = az%n; dz = az%d call iaxa(Fv,ax,2); nx = ax%n; dx = ax%d call oaxa(Fo,az,1) call oaxa(Fo,ax,2) call oaxa(Fo,at,3) </syntaxhighlight> #Allocate arrays and read wavelet, velocity and reflectivity. <syntaxhighlight lang="fortran"> allocate(ww(nt)); call rsf_read(Fw,ww) allocate(vv(nz,nx)); call rsf_read(Fv,vv) allocate(rr(nz,nx)); call rsf_read(Fr,rr) </syntaxhighlight> #Allocate temporary arrays. <syntaxhighlight lang="fortran"> allocate(um(nz,nx)); um=0. allocate(uo(nz,nx)); uo=0. allocate(up(nz,nx)); up=0. allocate(ud(nz,nx)); ud=0. </syntaxhighlight> #Loop over time. <syntaxhighlight lang="fortran"> do it=1,nt </syntaxhighlight> #Compute Laplacian: <math>\Delta U</math>. <syntaxhighlight lang="fortran"> ud(3:nz-2,3:nx-2) = & c0* uo(3:nz-2,3:nx-2) * (idx + idz) + & c1*(uo(3:nz-2,2:nx-3) + uo(3:nz-2,4:nx-1))*idx + & c2*(uo(3:nz-2,1:nx-4) + uo(3:nz-2,5:nx ))*idx + & c1*(uo(2:nz-3,3:nx-2) + uo(4:nz-1,3:nx-2))*idz + & c2*(uo(1:nz-4,3:nx-2) + uo(5:nz ,3:nx-2))*idz </syntaxhighlight> #Inject source wavelet: <math>\left[ \Delta U - f(t) \right]</math> <syntaxhighlight lang="fortran"> ud = ud - ww(it) * rr </syntaxhighlight> #Scale by velocity: <math>\left[ \Delta U - f(t) \right] v^2</math> <syntaxhighlight lang="fortran"> ud= ud *vv*vv </syntaxhighlight> #Time step: <math>U_{i+1} = \left[ \Delta U -f(t) \right] v^2 \Delta t^2 + 2 U_{i} - U_{i-1}</math> <syntaxhighlight lang="fortran"> up = 2*uo - um + ud * dt2 um = uo uo = up </syntaxhighlight> ==Python program== <syntaxhighlight lang="python"> #!/usr/bin/env python import sys import numpy import m8r c0=-30./12. c1=+16./12. c2=- 1./12. par = m8r.Par() verb = par.bool("verb",False) # verbosity # setup I/O files Fw=m8r.Input() Fv=m8r.Input ("vel") Fr=m8r.Input ("ref") Fo=m8r.Output() # Read/Write axes at = Fw.axis(1); nt = at['n']; dt = at['d'] az = Fv.axis(1); nz = az['n']; dz = az['d'] ax = Fv.axis(2); nx = ax['n']; dx = ax['d'] Fo.putaxis(az,1) Fo.putaxis(ax,2) Fo.putaxis(at,3) dt2 = dt*dt idz = 1/(dz*dz) idx = 1/(dx*dx) # read wavelet, velocity & reflectivity ww = numpy.zeros(nt,'f'); Fw.read(ww) vv = numpy.zeros([nz,nx],'f'); Fv.read(vv) rr = numpy.zeros([nz,nx],'f'); Fr.read(rr) # allocate temporary arrays um = numpy.zeros([nz,nx],'f') uo = numpy.zeros([nz,nx],'f') up = numpy.zeros([nz,nx],'f') ud = numpy.zeros([nz,nx],'f') # MAIN LOOP for it in range(nt): if verb: sys.stderr.write("\b\b\b\b\b %d" % it) ud[2:-2,2:-2] = \ c0* uo[2:-2,2:-2] * (idx + idz) + \ c1*(uo[2:-2,1:-3] + uo[2:-2,3:-1])*idx + \ c2*(uo[2:-2, :-4] + uo[2:-2,4: ])*idx + \ c1*(uo[1:-3,2:-2] + uo[3:-1,2:-2])*idz + \ c2*(uo[ :-4,2:-2] + uo[4: ,2:-2])*idz # inject wavelet ud = ud - ww[it] * rr # scale by velocity ud= ud *vv*vv # time step up = 2*uo - um + ud * dt2 um = uo uo = up if verb: sys.stderr.write("\n") Fo.write(uo) sys.exit(0) </syntaxhighlight> [[Image:wavepython.png|frame|center|Wave propagation snapshot.]] #Open files for input/output. <syntaxhighlight lang="python"> Fw=m8r.Input() Fv=m8r.Input ("vel") Fr=m8r.Input ("ref") Fo=m8r.Output() </syntaxhighlight> #Read axes from input files; write axes to output file. <syntaxhighlight lang="python"> at = Fw.axis(1); nt = at['n']; dt = at['d'] az = Fv.axis(1); nz = az['n']; dz = az['d'] ax = Fv.axis(2); nx = ax['n']; dx = ax['d'] Fo.putaxis(az,1) Fo.putaxis(ax,2) Fo.putaxis(at,3) </syntaxhighlight> #Allocate arrays and read wavelet, velocity and reflectivity. <syntaxhighlight lang="python"> ww = numpy.zeros(nt,'f'); Fw.read(ww) vv = numpy.zeros([nz,nx],'f'); Fv.read(vv) rr = numpy.zeros([nz,nx],'f'); Fr.read(rr) </syntaxhighlight> #Allocate temporary arrays. <syntaxhighlight lang="python"> um = numpy.zeros([nz,nx],'f') uo = numpy.zeros([nz,nx],'f') up = numpy.zeros([nz,nx],'f') ud = numpy.zeros([nz,nx],'f') </syntaxhighlight> #Loop over time. <syntaxhighlight lang="python"> for it in range(nt): </syntaxhighlight> #Compute Laplacian: <math>\Delta U</math>. <syntaxhighlight lang="python"> ud[2:-2,2:-2] = \ c0* uo[2:-2,2:-2] * (idx + idz) + \ c1*(uo[2:-2,1:-3] + uo[2:-2,3:-1])*idx + \ c2*(uo[2:-2, :-4] + uo[2:-2,4: ])*idx + \ c1*(uo[1:-3,2:-2] + uo[3:-1,2:-2])*idz + \ c2*(uo[ :-4,2:-2] + uo[4: ,2:-2])*idz </syntaxhighlight> #Inject source wavelet: <math>\left[ \Delta U - f(t) \right]</math> <syntaxhighlight lang="python"> ud = ud - ww[it] * rr </syntaxhighlight> #Scale by velocity: <math>\left[ \Delta U - f(t) \right] v^2</math> <syntaxhighlight lang="python"> ud= ud *vv*vv </syntaxhighlight> #Time step: <math>U_{i+1} = \left[ \Delta U -f(t) \right] v^2 \Delta t^2 + 2 U_{i} - U_{i-1}</math> <syntaxhighlight lang="python"> up = 2*uo - um + ud * dt2 um = uo uo = up </syntaxhighlight> ==References== <references/>
Summary:
Please note that all contributions to Madagascar are considered to be released under the GNU Free Documentation License 1.3 or later (see
My wiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
English
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Getting Madagascar
download
Installation
GitHub repository
SEGTeX
Introduction
Package overview
Tutorial
Hands-on tour
Reproducible documents
Hall of Fame
User Documentation
List of programs
Common programs
Popular programs
The RSF file format
Reproducibility with SCons
Developer documentation
Adding programs
Contributing programs
API demo: clipping data
API demo: explicit finite differences
Community
Conferences
User mailing list
Developer mailing list
GitHub organization
LinkedIn group
Development blog
Twitter
Slack
Tools
What links here
Related changes
Special pages
Page information