Seislet-based morphological component analysis using scale-dependent exponential shrinkage
Next:
About this document ...
Up:
Yang & Fomel: Seislet-based
Previous:
Connections between seislet frame
Bibliography
Bruce, A., S. Sardy, and P. Tseng, 1998, Block coordinate relaxation methods for nonparamatric signal denoising: Proceedings of SPIE,
3391
, 75-86.
Cao, J., Y. Wang, J. Zhao, and C. Yang, 2011, A review on restoration of seismic wavefields based on regularization and compressive sensing: Inverse Problems in Science and Engineering,
19
, 679-704.
Chartrand, R., 2012, Nonconvex splitting for regularized low-rank + sparse decomposition: IEEE Transactions on Signal Processing,
60
, 5810-5819.
Chartrand, R., and B. Wohlberg, 2013, A nonconvex admm algorithm for group sparsity with sparse groups: Presented at the Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).
Chen, Z., S. Fomel, and W. Lu, 2013a, Accelerated plane-wave destruction: Geophysics,
78
, V1-V9.
----, 2013b, Omnidirectional plane-wave destruction: Geophysics,
78
, V171-V179.
Claerbout, J. F., 1992, Earth soundings analysis: Processing versus inversion: Blackwell Scientific Publications Cambridge, Massachusetts, USA,
6
.
Daubechies, I., M. Defrise, and C. De Mol, 2004, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint: Commun. Pure Appl. Math.,
57
, 1413-1457.
Daubechies, I., R. DeVore, M. Fornasier, and S. Gunturk, 2010, Iteratively reweighted least squares minimization for sparse recovery: Commun. Pure Appl. Math.,
63
.
Donoho, D., 1995, De-noising by soft-thresholding: IEEE Transactions on Information Theory,
41
, 613-627.
Elad, M., P. Milanfar, and R. Rubinstein, 2007, Analysis versus synthesis in signal priors: Inverse Probl.,
23
, 947-968.
Elad, M., J. Starck, P. Querre, and D. L. Donoho, 2005, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA): Applied and Computational Harmonic Analysis,
19
, 340 - 358.
Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics,
67
, 1946-1960.
----, 2007, Shaping regularization in geophysical-estimation problems: Geophysics,
72
, R29-R36.
----, 2008, Nonlinear shaping regularization in geophysical inverse problems: SEG Annual Meeting, 2046-2051.
Fomel, S., and A. Guitton, 2006, Regularizing seismic inverse problems by model reparameterization using plane-wave construction: Geophysics,
71
, A43-A47.
Fomel, S., and Y. Liu, 2010, Seislet transform and seislet frame: Geophysics,
75
, V25-V38.
Fomel, S., P. Sava, I. Vlad, Y. Liu, and V. Bashkardin, 2013, Madagascar: open-source software project for multidimensional data analysis and reproducible computational experiments: Journal of Open Research Software,
1
, e8.
Gholami, A., 2014, Non-convex compressed sensing with frequency mask for seismic data reconstruction and denoising: Geophysical Prospecting,
62
, 1389-1405.
Gholami, A., and S. Hosseini, 2011, A general framework for sparsity-based denoising and inversion: IEEE Transactions on Signal Processing,
59
, 5202-5211.
Mallat, S., 2009, A wavelet tour of signal processing, 3rd ed.: Academic Press.
Marfurt, K. J., 2006, Robust estimates of 3D reflector dip and azimuth: Geophysics,
71
, P29-P40.
Mohimani, G. H., M. Babaie-Zadeh, and C. Jutten, 2009, A fast approach for overcomplete sparse decomposition based on smoothed l-0 norm: IEEE Transactions on Signal Processing,
57
, 289-301.
Ottolini, R., 1983, Signal/noise separation in dip space: Stanford Exploration Project: SEP report,
3
, 143-149.
Peyre, G., 2010, Advanced image, signal and surface processing.
Starck, J., M. Elad, and D. Donoho, 2004, Redundant multiscale transforms and their application for morphological component separation: Advances in Imaging and Electron Physics,
132
, 287-348.
----, 2005, Image decomposition via the combination of sparse representations and a variational approach: IEEE Trans. Image Process.,
14
, 1570-1582.
Starck, J., J. Fadili, and F. Murtagh, 2007, The undecimated wavelet decomposition and its reconstruction: IEEE Trans. Image Process.,
16
, 297-309.
Sweldens, W., 1998, The lifting scheme: A construction of second generation wavelets: SIAM Journal on Mathematical Analysis,
29
, 511-546.
Voronin, S., and R. Chartrand, 2013, A new generalized thresholding algorithm for inverse problems with sparsity constraints: 38th International Conference on Acoustics, Speech, and Signal Processing, IEEE, 1636-1640.
Woiselle, A., J. Starck, and J. Fadili, 2011, 3-D data denoising and inpainting with the low-redundancy fast curvelet transform: J. Math. Imaging Vis.,
39
, 121-139.
2021-08-31