next up previous [pdf]

Next: About this document ... Up: Yang & Fomel: Seislet-based Previous: Connections between seislet frame

Bibliography

Bruce, A., S. Sardy, and P. Tseng, 1998, Block coordinate relaxation methods for nonparamatric signal denoising: Proceedings of SPIE, 3391, 75-86.

Cao, J., Y. Wang, J. Zhao, and C. Yang, 2011, A review on restoration of seismic wavefields based on regularization and compressive sensing: Inverse Problems in Science and Engineering, 19, 679-704.

Chartrand, R., 2012, Nonconvex splitting for regularized low-rank + sparse decomposition: IEEE Transactions on Signal Processing, 60, 5810-5819.

Chartrand, R., and B. Wohlberg, 2013, A nonconvex admm algorithm for group sparsity with sparse groups: Presented at the Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).

Chen, Z., S. Fomel, and W. Lu, 2013a, Accelerated plane-wave destruction: Geophysics, 78, V1-V9.

----, 2013b, Omnidirectional plane-wave destruction: Geophysics, 78, V171-V179.

Claerbout, J. F., 1992, Earth soundings analysis: Processing versus inversion: Blackwell Scientific Publications Cambridge, Massachusetts, USA, 6.

Daubechies, I., M. Defrise, and C. De Mol, 2004, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint: Commun. Pure Appl. Math., 57, 1413-1457.

Daubechies, I., R. DeVore, M. Fornasier, and S. Gunturk, 2010, Iteratively reweighted least squares minimization for sparse recovery: Commun. Pure Appl. Math., 63.

Donoho, D., 1995, De-noising by soft-thresholding: IEEE Transactions on Information Theory, 41, 613-627.

Elad, M., P. Milanfar, and R. Rubinstein, 2007, Analysis versus synthesis in signal priors: Inverse Probl., 23, 947-968.

Elad, M., J. Starck, P. Querre, and D. L. Donoho, 2005, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA): Applied and Computational Harmonic Analysis, 19, 340 - 358.

Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics, 67, 1946-1960.

----, 2007, Shaping regularization in geophysical-estimation problems: Geophysics, 72, R29-R36.

----, 2008, Nonlinear shaping regularization in geophysical inverse problems: SEG Annual Meeting, 2046-2051.

Fomel, S., and A. Guitton, 2006, Regularizing seismic inverse problems by model reparameterization using plane-wave construction: Geophysics, 71, A43-A47.

Fomel, S., and Y. Liu, 2010, Seislet transform and seislet frame: Geophysics, 75, V25-V38.

Fomel, S., P. Sava, I. Vlad, Y. Liu, and V. Bashkardin, 2013, Madagascar: open-source software project for multidimensional data analysis and reproducible computational experiments: Journal of Open Research Software, 1, e8.

Gholami, A., 2014, Non-convex compressed sensing with frequency mask for seismic data reconstruction and denoising: Geophysical Prospecting, 62, 1389-1405.

Gholami, A., and S. Hosseini, 2011, A general framework for sparsity-based denoising and inversion: IEEE Transactions on Signal Processing, 59, 5202-5211.

Mallat, S., 2009, A wavelet tour of signal processing, 3rd ed.: Academic Press.

Marfurt, K. J., 2006, Robust estimates of 3D reflector dip and azimuth: Geophysics, 71, P29-P40.

Mohimani, G. H., M. Babaie-Zadeh, and C. Jutten, 2009, A fast approach for overcomplete sparse decomposition based on smoothed l-0 norm: IEEE Transactions on Signal Processing, 57, 289-301.

Ottolini, R., 1983, Signal/noise separation in dip space: Stanford Exploration Project: SEP report, 3, 143-149.

Peyre, G., 2010, Advanced image, signal and surface processing.

Starck, J., M. Elad, and D. Donoho, 2004, Redundant multiscale transforms and their application for morphological component separation: Advances in Imaging and Electron Physics, 132, 287-348.

----, 2005, Image decomposition via the combination of sparse representations and a variational approach: IEEE Trans. Image Process., 14, 1570-1582.

Starck, J., J. Fadili, and F. Murtagh, 2007, The undecimated wavelet decomposition and its reconstruction: IEEE Trans. Image Process., 16, 297-309.

Sweldens, W., 1998, The lifting scheme: A construction of second generation wavelets: SIAM Journal on Mathematical Analysis, 29, 511-546.

Voronin, S., and R. Chartrand, 2013, A new generalized thresholding algorithm for inverse problems with sparsity constraints: 38th International Conference on Acoustics, Speech, and Signal Processing, IEEE, 1636-1640.

Woiselle, A., J. Starck, and J. Fadili, 2011, 3-D data denoising and inpainting with the low-redundancy fast curvelet transform: J. Math. Imaging Vis., 39, 121-139.




2021-08-31