o
S
S

L}
=
2
2
8
5

3000

1000

Depth (m)

o
S
S
@

NATIONAL ENGINEERING LABORATORY
FOR OFFSHORE OIL EXPLORATION

Sergey Fomel, Jinghuat Gao, Baoli Wang, and Pengliang Yang

Distance (m) Distance (m) Distance (m)
4000 6000 4000 6000 4000 6000
- .
=}
e}
- =)
o S
15} S
=3 +
+
3 - P
a5 B @ g
R = 3~ =~
oF 4 =X 4
o= 3 s =
=} B B
3= 13 = &
E
)
& g
o Q
15}
8
o o
8 =
Updated velocity o Updated velocity @ Updated velocity
Distance (m) Distance (m) Distance (m)
2000 4000 2000 4000 6000 2000 4000 6000
- = - =)
3
I3
g
=)
s E
+
g® a
RE SE
= =
g g
] Q
° E
g g E g -
Updated velocity - » Updated velocity « Updated velocity

4000

3000
V (m/s)

2000

3000 4000 5000
V (m/s)

2000

1000



Copyright (© 2020-21

by Xi’an Jiaotong University



XJTU — TABLE OF CONTENTS

Pengliang Yang, Baoli Wang, and Jinghuai Gao, RTM using effective
boundary saving: A staggered grid GPU implementation. . ...

Pengliang Yang, Jinghuat Gao, and Baoli Wang, A graphics processing
unit implementation of time-domain full-waveform inversion. .

Pengliang Yang and Sergey Fomel, Seislet-based morphological component
analysis using scale-dependent exponential shrinkage.........

Pengliang Yang, A numerical tour of wave propagation..................

Pengliang Yang, Fourier pseudo spectral method for attenuative simulation
with fractional Laplacian ................ ... ... ... ...........

Pengliang Yang, From modeling to full waveform inversion: A hands-on
tour using Madagascar........... ... i

| =

| =
—_

NESIRES

| [&

l@
Ne)



11



National Engineering Laboratory for Offshore Oil Ezxploration, XJTU, August 31, 2021

RTM using effective boundary saving: A staggered
grid GPU implementation

Pengliang Yang*, Jinghuai Gao*, and Baoli Wang!
*Xi’an Jiaotong University, National Engineering Laboratory for Offshore Oil
Ezxploration, Xi’an, China, 710049
TCCTEG Xi’an Research Institute, Xi’an, China, 710077

ABSTRACT

GPU has become a booming technology in reverse time migration (RTM) to per-
form the intensive computation. Compared with saving forward modeled wave-
field on the disk, RTM via wavefield reconstruction using saved boundaries on
device is a more efficient method because computation is much faster than CPU-
GPU data transfer. In this paper, we introduce the effective boundary saving
strategy in backward reconstruction for RTM. The minimum storage require-
ment for regular and staggered grid finite difference is determined for perfect
reconstruction of the source wavefield. Particularly, we implement RTM using
GPU programming, combining staggered finite difference scheme with convolu-
tional perfectly matched layer (CPML) boundary condition. We demonstrate the
validity of the proposed approach and CUDA codes with numerical example and
imaging of benchmark models.

INTRODUCTION

One-way equation based imaging techniques are inadequate to obtain accurate images
in complex media due to propagation direction changes in the background model
(Biondi|, 2006)). These approaches are extremely limited when handling the problems
of turning waves in the model containing sharp wave-speed contrasts and steeply
dipping reflectors. As an advanced imaging technology without dip and extreme
lateral velocity limitation, reverse time migration (RTM) was proposed early (Baysal
et al., |1983; [McMechan) [1983), but not practical in terms of stringent computation
and memory requirement. However, it gained increasingly attention in recent years
due to the tremendous advances in computer capability. Until recently, 3D prestack
RTM is now feasible to obtain high fidelity images (Yoon et al., 2003; Guitton et al.,
2000)).

Nowadays, graphics processing unit (GPU) is a booming technology, widely used
to mitigate the computational drawbacks in seismic imaging and inversion, from one-
way depth migration (Liu et al., [2012b; |Lin and Wang), 2012) to two-way RTM (Hus-
sain et al.,|2011; Micikevicius| [2009; (Clapp et al., [2010), from 2D to 3D (Micikevicius,

1



2 Yang et al. TCCS-7

2009} |Abdelkhalek et al., [2009; [Foltinek et al., [2009; |[Liu et al. 2013aj; [Michéa and
Komatitsch) 2010)), from acoustic media to elastic media (Weiss and Shragge, [2013)),
from isotropic media to anisotropy (Guo et al. |2013; Suh and Wangj, [2011}; Liu et al.,
2009). The investigators have studied many approaches: the Fourier integral method
(Liu et al., 2012c), spectral element method (Komatitsch et al., 2010b), finite el-
ement method (Komatitsch et al., 2010a) as well as the rapid expansion method
(REM) with pseudo-spectral approach (Kim et al., [2013). A variety of applications
were conducted, for instance, GPU-based RTM denoising (Ying et al., 2013), itera-
tive velocity model building (Ji et al., 2012)), multi-source RTM (Boonyasiriwat et al.,
2010)), as well as least-square RTM (Leader and Clapp), 2012).

The superior speedup performance of GPU-based imaging and inversion has been
demonstrated by numerous studies. One key problem of GPU-based RTM is that the
computation is much faster while the data exchange between host and device always
takes longer time. Many researchers choose to reconstruct the source wavefield instead
of storing the modeling time history on the disk, just saving the boundaries. Unlike
most GPU-based imaging and inversion studies, this paper is devoted to the practical
technical issues instead of speedup performance. Starting from the computational
strategies by Dussaud et al.| (2008]), we determine the minimum storage requirement in
backward wavefield reconstruction for regular and staggered grid finite difference. We
implement RTM with staggered finite difference scheme combined with convolutional
perfectly matched layer (CPML) boundary condition using GPU programming. We
demonstrate the validity of the proposed approach and CUDA codes with numerical
test and imaging of benchmark models.

OVERVIEW OF RTM AND ITS COMPUTATION

In the case of constant density, the acoustic wave equation is written as

1 9Pp(x, tix)
v2(x) ot?

where p(x,t; %) is the wavefield excited by the source at the position x = xg, v(x)
stands for the velocity in the media, V2 = V-V = 0,, + 0.., f(t) denotes the source
signature. For the convenience, we eliminate the source term hereafter and use the
notation 9, = 8 and Oy, = 8‘22 , u = x,z. The forward marching step can be specified
after discretization as

= Vip(x, t:xs) + (1) (x — x), (1)

pk-‘rl — 2pk‘ . pk‘—l + UQAtQVQPk. (2)

Based on the wave equation, the principle of RTM imaging can be interpreted as
the cross-correlation of two wavefields at the same time level, one computed by for-
ward time recursion, the other computed by backward time stepping (Symes, 2007)).
Mathematically, the cross-correlation imaging condition can be expressed as

Z/ o dthS X, t; X )Py (X, 1 X,), (3)



TCCS-7 Boundary saving in GPU-based RTM 3

where I(x) is the migrated image at point x; and p,(-) and p,(-) are the source
wavefield and receiver (or geophone) wavefield. The normalized cross-correlation
imaging condition is designed by incorporating illumination compensation:

t
N Jo ALY ps(x, X pg (X, 15X
[(X) _ Z fO nglp ( )pg( g).

s=1 f(;max dtpS(X> l; XS)ps <X7 t; Xs)

(4)

There are some possible ways to do RT'M computation. The simplest one may be
just storing the forward modeled wavefields on the disk, and reading them for imag-
ing condition in the backward propagation steps. This approach requires frequent
disk I/O and has been replaced by wavefield reconstruction method. The so-called
wavefield reconstruction method is a way to recover the wavefield via backward re-
constructing or forward remodeling, using the saved wavefield snaps and boundaries.
It is of special value for GPU computing because saving the data in device variables
eliminates data transfer between CPU and GPU. By saving the last two wavefield
snaps and the boundaries, one can reconstruct the wavefield of every time step, in
time-reversal order. The checkpointing technique becomes very useful to further re-
duce the storage (Symes, 2007; Dussaud et al., 2008). Of course, it is also possible
to avert the issue of boundary saving by applying the random boundary condition,
which may bring some noises in the migrated image (Clapp, 2009; |Clapp et al., 2010;
Liu et al., [2013blal).

EFFECTIVE BOUNDARY SAVING

Here we mainly focus on finding the part of boundaries which is really necessary to be
saved (referred to as the effective boundary in this paper), even though there are many
other practical implementation issues in GPU-based RTM (Liu et al., 2012a). In what
follows, we introduce the effective boundary saving for regular grid and staggered grid
finite difference. All analysis will be based on 2D acoustic wave propagation in RTM.
In other cases, the wave equation may change but the principle of effective boundary
saving remains the same.

Which part of the wavefield should be saved?

To reconstruct the modeled source wavefield in backward steps rather than read the
stored history from the disk, one can reuse the same template by exchanging the role
of pF*1 and p*~!, that is,

pk—l — 2pk . pk—i-l + U2At2v2pk. (5)
We conduct the modeling (and the backward propagation in the same way due to
template reuse):

foriz,iz... po(:) =2p1(:) — po(:) + V2 () ALV, (2)
ptr = po; po = p1;p1 = ptr; //exchange pointer



4 Yang et al. TCCS-7

where (:) = [iz,iz], po and p; are p**!/p*~1 and p*, respectively. When the modeling
is finished, only the last two wave snaps (p™ and p™~!) as well as the saved boundaries
are required to do the backward time recursion.

As you see, RTM begs for an accurate reconstruction before applying the imaging
condition using the backward propagated wavefield. The velocity model is typically
extended with sponge absorbing boundary condition (ABC) (Cerjan et all 1985) or
PML and its variants (Komatitsch and Martin, 2007) to a larger size. In Figure
1, the original model size A;A3A3A, is extended to C1C5C5C,. In between is the
artificial boundary (C1CC3Cy\ A1 A2 A3A4). Actually, the wavefield we intend to re-
construct is not the part in extended artificial boundary C;CyC3Cy\ A1 A3 A3A4 but
the part in the original model zone A;A3A3A4. We can reduce the boundary load
further (from whole C1CyC5C,\ A1 A3A3A, to part of it BiByB3By ) depending on
the required grids in finite difference scheme, as long as we can maintain the cor-
rectness of wavefield in A;A5A3A,. We do not care about the correctness of the
wavefield neither in A; A3 A3A4 nor in the effective zone B;ByB3By (i.e. the wave-
field in C1CC3Cy\B1B2B3By). Furthermore, we only need to compute the imaging
condition in the zone A; A; A3A4, no concern with the part in C;C,C3C,\ A1 As A3 Ay.

Cl C4

Figure 1: Extend the model size with artificial boundary. A;A;AsA, indicates the
original model size (nz x nz). C1CyC3Cy is the extended model size (nz + 2nb)(nx +
2nb). B1ByBsB4\ A1 A3 A3Ay is the effective boundary area.



TCCS-7 Boundary saving in GPU-based RTM )

Table 1: Finite difference coefficients for regular grid (Order-2/N)

-4 -3 -2 -1 0 1 2 3 4
1 -2 1
/12 | 4/3 | 5/2 | 4/3 | -1/12
1/90 | -3/20 | 3/2 | -49/18 | 3/2 | -3/20 | 1/90
“1/560 | 8/315 | -1/5 | 8/5 | -205/72 | 8/5 | -1/5 | 8/315 | -1/560

~.

I
=W N =

2=2=22=
|

Effective boundary for regular grid finite difference

Assume 2N-th order finite difference scheme is applied. The Laplacian operator is
specified by

Alz2 Zi\;—N cip” liz][iz + 1] + A%ﬁ Zi\;—N cip” iz + i][iz]

(6)

where ¢; is given by Table 1, see a detailed derivation in [Fornberg (1988). The
Laplacian operator has x and z with same finite difference structure. For x dimension
only, the second derivative of order 2N requires at least N points in the boundary
zone, as illustrated by Figure 2. In 2-D case, the required boundary zone has been
plotted in Figure 3a. Note that four corners in By B; B3 B, in Figure 1 are not needed.
This is exactly the boundary saving scheme proposed by |Dussaud et al.| (2008).

Keep in mind that we only need to guarantee the correctness of the wavefield in the
original model zone A; Ay A3A,. However, the saved wavefield in A; Ay A3 A4\ B1 B2 B3 B,
is also correct. Is it possible to further shrink it to reduce number of points for sav-
ing? The answer is true. Our solution is: saving the inner N layers on each side
neighboring the boundary Ay As A3As\D1DyD3Dy, as shown in Figure 3b. We call it
the effective boundary for regular finite difference scheme.

After nt steps of forward modeling, we begin our backward propagation with the
last 2 wavefield snap p™ and p™ ! and saved effective boundaries in A; Ay A3 A4\ D1 Dy D3 Dy
At that moment, the wavefield is correct for every grid point. (Of course, the correct-
ness of the wavefield in Ay Ay A3A, is guaranteed.) At time k, we assume the wave-
field in A;A3A3A, is correct. One step of backward propagation means A;As A3Ay
is shrunk to D1DyD3D,. In other words, the wavefield in DDy D3D, is correctly
reconstructed. Then we load the saved effective boundary of time k£ to overwrite
the area A;AyA3A\D1DyD3D,. Again, all points of the wavefield in Ay AsA3A,
are correct. We repeat this overwriting and computing process from one time step
to another (k — k — 1), in reverse time order. The wavefield in the boundary
C1CyC35C\A1 Ay A3 A, may be incorrect because the points here are neither saved
nor correctly reconstructed from the previous step.



6 Yang et al. TCCS-7

Extended boundary. Inner grid.

@ @ @ L @ @
Pxy Pxs Pro Pxy ProPx_Pr_JPrx_Pr_4 *

N 0 R
Oew = bz D1y ciptliz +illiz], N =4.

Figure 2: 1-D schematic plot of required points in regular grid for boundary saving.
Computing the laplacian needs N points in the extended boundary zone, the rest
N + 1 points in the inner model grid. N points is required for boundary saving.

Cy Cy Cy Cs

Dsi i D3

- .{}.....

Dy o)
:

Cy Cy Cy Cy

(a) (b)

Figure 3: A 2-D sketch of required points for boundary saving for regular grid finite
difference: (a) The scheme proposed by |Dussaud et al.|(2008) (red zone). (b) Proposed
effective boundary saving scheme (gray zone).




TCCS-7 Boundary saving in GPU-based RTM 7

Table 2: Finite difference coefficients for staggered grid (Order-2N)

l 1 2 3 4
N =1 1
N =2 1.125 -0.0416667
N=3 1.171875 -0.0651041667 0.0046875
N =4 | 1.1962890625 | -0.079752604167 | 0.0095703125 | -0.000697544642857

Effective boundary for staggered grid finite difference

The limitation of boundary saving strategy proposed in Dussaud et al.| (2008) is
that only regular grid finite difference scheme is considered in RTM. In the case of
staggered grid, half grid points are employed to obtain higher accuracy for finite
difference. Recursion from time k to k4 1 (or £ — 1) may not be realized with ease
due to the Laplacian operator, which involves the second derivative. An effective
approach is to split Eq. into several first derivative equations or combinations of
first derivative and second derivative equations. The first derivative is defined as

N

Ouf — Aiu (Z s flu+ iAu/2] — flu— iAu/2])> w—z (7)

i=1
where the finite difference coeflicients are listed in Table 2.

The use of half grid points in staggered grid makes the effective boundary a little
different from that in regular grid. To begin with, we define some intermediate
auxiliary variables: Az := 0,p, Az := 0.p, Pxr := 0,Ar and Pz := 0,Az. Thus the
acoustic wave equation reads

92
6712) =v?*(Px + Pz)

Py = 0,Ax, Pz = 0,Az (8)
Ax = 0,p, Az = 0.p

It implies that we have to conduct 2 finite difference steps (one for Az and Az and the
other for Pz and Pz ) to compute the Laplacian in one step of time marching. Take
8-th order (2N = 8) finite difference in x dimension for example. As can be seen from
Figure 4, computing 0., at Pz needs the correct values at Axy,Axs, Axy, Az, in the
boundary; computing Axy,Axs, Axs,Axy needs the correct values at Pxy,Prs, Prg,Pry;
in the boundary. An intuitive approach is saving N points of Az (Axy,..., Ax,) and
N vpoints of Pz (Pxy, ..., Px;). The saving procedure guarantees the correctness of
these points in the wavefield. Another possible approach is just saving the 2N — 1
points of Px (Pzy, ..., Pxy). In this way, the values of Az, ..., Az can be correctly
obtained from the calculation of the first derivative. The latter method is preferable
because it is much easier for implementation while requiring less points. Speaking two
dimensionally, some points in the four corners at in By B, B3 B4 of Figure 1 may be still



8 Yang et al. TCCS-7

necessary to store, as shown in Figure Ha. The reason is that you are working with
Laplacian, not second derivative in one dimension. Again, we switch our boundary
saving part from out of AjAsA3A, to AyAyA3A\D1DsD3D,. Less grid points are
required to guarantee correct reconstruction while points in the corner are no longer
needed. Therefore, the proposed effective boundary for staggered finite difference needs
2N — 1 points to be saved on each side, see Figure 5b.

Extended boundary. Inner grid.

AQL‘7 AZL‘G AZL‘5 Axy AuLg AIL’Q AéL’l A.’I,’_y‘l.’lf_gAl’_;y‘lfL’_4

Pxy Pxg Prs Pxy Prs Pxo Pxq oPr_Pr_Pr_Pr_4 L

Bzep = Op Az = 2= SN | ¢i(Az[r+iAz/2] - Azlu—iAz/2)),
Ax = Ozp = ﬁ Zivzl ci(plr+iAx/2] —plx —iAz/2]),N = 4.

Figure 4: 2N-th order staggered grid finite difference: correct backward propagation
needs 2N — 1 points on one side. For N = 4, computing 0,, at Pxq needs the correct
values at Axy, Axz, Axy, Axy in the boundary; computing Axy,Axs, Axs, Axy needs
the correct values at Pxy, Pxs, Pxg, Pr7 in the boundary. Thus, 2N — 1 = 7 points
in boundary zone is required to guarantee the correctness of the inner wavefield.

Storage analysis

For the convenience of complexity analysis, we define the size of the original model
as nz X nx. In each direction, we pad the model with the nb points on both sides
as the boundary. Thus, the extended model size becomes (nz + 2nb)(nx + 2nb).
Conventionally one has to save the whole wavefield within the model size on the disk.
The required number of points is

nz-n. (9)
According to Dussaud et al.| (2008), for 2N-th order finite difference in regular grid,
N points on each side are added to guarantee the correctness of inner wavefield. The
saving amount of every time step is

2N -nz + 2N - nx = 2N (nz + nx). (10)
In the proposed effective boundary saving strategy, the number becomes

2N -nz + 2N -nx — 4N? = 2N (nz + nx) — 4N (11)

In the case of staggered grid, there are 2N — 1 points on each side. Allowing for
four corners, the number for the effective boundary saving is

22N — 1)nz 4+ 2(2N — D)nw — 4(2N — 1)* = 2(2N — 1)(nz +nx) — 4(2N — 1)* (12)



TCCS-7 Boundary saving in GPU-based RTM 9

Cs Cs Cy Cs

Ay A 4 A

Ay Ay A

Cy Cy Cy Cy

(a) (b)

Figure 5: A 2-D sketch of required points for boundary saving for staggered grid
finite difference: (a) Saving the points outside the model (red region). (b) Effective
boundary, saving the points inside the model zone (gray region).

Table 3: Storage requirement for different saving strategy

Boundary saving scheme Saving amount (Unit: Bytes)
Conventional saving strategy dnt - nz - nx
Dussaud’s: regular grid dnt - 2N (nz + nx)

Effective boundary: regular grid 4nt - (2N (nz + nx) — 4N?)
Effective boundary: staggered grid | 4nt - (2(2N — 1)(nz + nx) — 4(2N — 1)?)

Assume the forward modeling is performed nt steps using the floating point format
on the computer. The saving amount will be multiplied by nt - sizeof(float) = 4nt.
Table 3 lists this memory requirement for different boundary saving strategies.

In principle, the proposed effective boundary saving will reduce 4nt - 4N? bytes
for regular grid finite difference, compared with the method of Dussaud et al.| (2008)).
The storage requirement of staggered grid based effective boundary saving is about
(2N — 1)/N times of that in the regular grid finite difference, by observing 2N <
nb < nx,nz. For the convenience of practical implementation, the four corners can
be saved twice so that the saving burden of the effective boundary saving has no
difference with the method of Dussaud et al.| (2008) in regular grid finite difference.
Since the saving burden for staggered grid finite difference has not been touched in
Dussaud et al| (2008)), it is still of special value to minimize its storage requirement
for GPU computing.




10 Yang et al. TCCS-7

GPU IMPLEMENTATION USING CPML BOUNDARY
CONDITION

CPML boundary condition

To combine the absorbing effects into the acoustic equation, CPML boundary condi-
tion is such a nice way that we merely need to combine two convolutional terms into
the above equations:

( g% = v (Pr + Pz)
Pr =0,Ax + V¥,
Pz=0,Az+V,
Axr =0,p+ P,

| Az2=0.p+ D,

where ¥,, ¥, are the convolutional terms of Ax and Az; ®,, ®, are the convolutional

terms of Px and Pz. These convolutional terms can be computed via the following
relation:

(13)

" = b, U 4 (b, — 1) A
Yr = b, U 4 (b, — 1) Az
" = b, d" ! + (b, — 1)" 2
" =b,d" ! + (b, — 1)0" 2

(14)

where b, = e~ @A and b, = e~} In the absorbing layers, the damping parameter

d(u) we used is (Collino and Tsogkal, 2001)):

d(u) = dO(Z)27 do = _ﬁ IH(R), (15)
where L indicates the PML thickness; u represent the distance between current po-
sition (in PML) and PML inner boundary. R is always chosen as 1073 ~ 107¢. For
more details about the derivation of CPML, the interested readers are referred to
Collino and Tsogkal (2001)) and Komatitsch and Martin (2007). The implementation
of CPML boundary condition is easy to carry out: in each iteration the wavefield ex-
trapolation is performed according to the first equation in ; it follows by adding
the convolutional terms in terms of .

Memory manipulation

Consider the Marmousi model (size=751x2301) and the Sigsbee model (size=1201x3201).
Assume nt = 10000 and the finite difference of order 2N = 8. Conventionally, one
have to store 64.4 GB for Marmousi model and 143.2 GB for Sigsbee model on the
disk of the computer. Using the method of Dussaud et al.| (2008) or regular grid based
effective boundary saving, the storage requirement will be greatly reduced, about 0.9



TCCS-7 Boundary saving in GPU-based RTM 11

GB and 1.3 GB for the two models. Staggered grid finite difference is preferable due
to higher accuracy, however, the saving amount of effective boundary needs 1.6 GB
and 2.3 GB for the two models, much larger than regular grid. Besides the addi-
tional variable allocation, the storage requirement may still be a bottleneck to save
all boundaries on GPU to avert the CPU saving and data exchange for low-level
hardware, even if we are using effective boundary saving.

Fortunately, page-locked (also known as pinned) host memory provides us a prac-
tical solution to mitigate this conflict. Zero-copy system memory has identical coher-
ence and consistency to global memory. Copies between page-locked host memory
and device memory can be performed concurrently with kernel execution (Nvidia,
2011)). [*| Therefore, we store a certain percentage of effective boundary on the page-
locked host memory, and the rest on device. A reminder is that overuse of the pinned
memory may degrade the bandwidth performance.

Code organization

Allowing for the GPU block alignment, the thickness of CPML boundary is cho-

sen to be 32. Most of the CUDA kernels are configured with a block size 16x16.

Some special configurations are related to the initialization and calculation of CPML
boundary area. The CPML variables are initialized along x and z axis with CUDA

kernels cuda_init_abcz(...) and cuda_init_abcx(...). When device_alloc(...)

is invoked to allocate memory, there is a variable phost to control the percentage

of the effective boundary saved on host and device memory by calling the function
cudaHostAlloc(...). A pointer is referred to the pinned memory via cudaHostGetDevicePointer(...)
The wavelet is generated on device using cuda_ricker wavelet(...) with a domi-

nant frequency fm and delayed wavelength. Adding a shot can be done by a smooth

bell transition cuda add bellwlt(...). We implement RTM (of order NJ=2, 4, 6,

8, 10) with forward and backward propagation functions step_forward(...) and
step_backward(...), in which the shared memory is also used for faster computation.

The cross-correlation imaging of each shot is done by cuda_cross_correlate(...).

The final image can be obtained by stacking the images of many shots using cuda_imaging(...).
Most of the low-frequency noise can be removed by applying the muting function
cuda_mute(...) and the Laplacian filtering cuda_laplace filter(...).

NUMERICAL EXAMPLES
Exact reconstruction

To make sure that the proposed effective boundary saving strategy does not introduce
any kind of error/artifacts for the source wavefield, the first example is designed using

*Generally, a computer has same or larger amount of resource on host compared with GDDR
memory on device.



12 Yang et al. TCCS-7

a constant velocity model: velocity=2000 m/s, nz = nx = 320, Az = Az = 5m. The
source position is set at the center of the model. The modeling process is performed
nt = 1000 time samples. We record the modeled wavefield snap at k& = 420 and
k = 500, as shown in the top panels of Figure 6. The backward propagation starts
from k£ = 1000 and ends up with & = 1. In the backward steps, the reconstructed
wavefield at £ = 500 and k = 420 are also recorded, shown in the bottom panels of
Figure 6. We also plot the wavefield in the boundary zone in both two panels. Note
that the correctness of the wavefield in the original model zone is guaranteed while
the wavefield in the boundary zone does not need to be correct.

Marmousi model

The second example is GPU-based RTM for Marmousi model (Figure 7) using our
effective boundary saving. The spatial sampling interval is Ax = Az = 4m. 51
shots are deployed. In each shot, 301 receivers are placed in the split shooting mode.
The parameters we use are listed as follows: nt = 13000, At = 0.3 ms. Due to the
limited resource on our computer, we store 65% boundaries using page-locked memory.
Figure 8 gives the resulting RTM image after Laplacian filtering. As shown in the
figure, RTM with the effective boundary saving scheme produces excellent image: the
normalized cross-correlation imaging condition greatly improves the deeper parts of
the image due to the illumination compensation. The events in the central part of
the model, the limits of the faults and the thin layers are much better defined.

Sigsbee model

The last example is Sigsbee model shown in Figure 9. The spatial interval is Az =
Az = 25m. 55 shots are evenly distributed on the surface of the model. We still
perform nt = 13000 time steps for each shot (301 receivers). Due to the larger
model size, 75% boundaries have to be stored with the aid of pinned memory. Our
RTM result is shown in Figure 10. Again, the resulting image obtained by normal-
ized cross-correlation imaging condition exhibits better resolution for the edges of
the salt body and the diffraction points. Some events in the image using normal-
ized cross-correlation imaging condition are more visible, while they have a much
lower amplitude or are even completely lost in the image of cross-correlation imaging
condition.

CONCLUSION AND DISCUSSION

In this paper, we introduce the effective boundary saving strategy for GPU-based
RTM imaging. Compared with the method of Dussaud et al. (2008)), the saving
amount of effective boundary with regular grid finite difference scheme is slightly



TCCS-7 Boundary saving in GPU-based RTM 13

Distance (km) Distance (km)
-0.5 0 0.5 —-0.5 0 0.5

0.5
0.5

Depth (km)
1

Depth (km)
1

1.5
1.5

modeled at k=420 modeled at k=500
(a) (b)
Distance (km) Distance (km)

—-0.5 0 0.5

-0.5 0

0.5
0.5

Depth (km)
1

Depth (km)
1

te]
—

7
.

reconstructed at k=500 reconstructed at k=420
(©) (d

Figure 6: The wavefield snaps with a constant velocity model: velocity=2000 m/s,
nz = nr = 320, Az = Az = 5m, source at the center. The forward modeling is
conducted with nt = 1000 time samples. (a-b) Modeled wavefield snaps at k = 420
and k = 500. The backward propagation starts from £ = 1000 and ends at k = 1.
(c—d) Reconstructed wavefield snaps at k& = 500 and k& = 420. Note the correctness
of the wavefield in the original model zone is guaranteed while the wavefield in the
boundary zone may be incorrect (32 layers of the boundary on each side are also
shown in the figure).



14 Yang et al. TCCS-7

Lateral (km)

LO_ 0

(@)

-
"E\ <
4 n
VLO ~o
o o g
= =
o,
) >
=) ™

V]

0

a (aV]

Marmousi model

Figure 7: The Marmousi velocity model. | gpurtm/marmousi/ marmousi

Lateral (km) Lateral (km)

Q
-

Depth (km)
Depth (km)

2

correlation normalized_correlation

Figure 8: RTM result of Marmousi model using effective boundary saving
scheme (staggered grid finite difference). (a) Result of cross-correlation imag-
ing condition.  (b) Result of normalized cross-correlation imaging condition.

gpurtm/marmousi/ mimagl,mimag2




from rsf.proj import *

Fetch('marmvel.hh','marm')
Flow('vel','marmvel.hh',
     '''
     dd form=native | math output="0.001*input"|
     put n1=751 o1=0 d1=0.004 label1=Depth   unit1=km
     	 n2=2301 o2=0 d2=0.004 label2=Lateral unit2=km
     ''')

Result('marmousi','vel',
     '''
     grey title="Marmousi model" wantitle=y allpos=y color=j
     pclip=100 scalebar=y bartype=v barlabel="V" barunit="m/s"
     ''' )

Flow('mimag1 mimag2','vel',
	'''
	gpurtm imag2=${TARGETS[1]} NJ=6 phost=65
	fm=25 dt=0.0003 tdmute=300
	nt=13000 ns=51 ng=301 
	jsx=40 jsz=0 jgx=1 jgz=0 
	sxbeg=150 szbeg=1 gxbeg=0 gzbeg=1 
	vmute=1.52
	''')

Result('mimag1','grey allpos=n title="correlation"')
Result('mimag2','grey allpos=n title="normalized_correlation" ')

End()




TCCS-7 Boundary saving in GPU-based RTM 15

Lateral (kft)
20 30 40 50 60 70 80 90

10

10 12 14

Depth (kft)
V (kft/s)

o
N

30

Velocity

Figure 9: The Sigsbee velocity model. ‘ gpurtm/sigsbee/ Sigsbee‘

reduced. The RTM storage of effective boundary saving for staggered finite differ-
ence is first explored, and then implemented with CPML boundary condition. We
demonstrate the validity of effective boundary saving strategy by numerical test and
imaging of benchmark models.

The focus of this paper is RTM implementation using effective boundary saving
in staggered grid instead of GPU acceleration. A limitation of this work is that the
numerical examples are generated with NVS5400M GPU on a laptop (compute ca-
pability 2.1, GDDR3). It is easy to do performance analysis for different dataset size
and higher stencil orders if the latest GPU card and CUDA driver are available. It is
also possible to obtain improved speedup by incorporating MPI with GPU program-
ming using advanced clusters with larger GDDR memory (Komatitsch et al., 2010a;
Suh et al.,2010) or FPGA optimization (Fu and Clapp), 2011} Medeiros et al., 2011]).
Unfortunately, higher stencil orders of staggered grid RT'M using effective boundary
implementation in 3D is still a problem. 3D RTM using the 2nd order regular grid
finite difference with Clayton and Enquist boundary condition (only 1 layer on each
side to save) needs tens of GBs (Liu et al., 2013b)). It implies that 3D RTM with
higher stencil orders will definitely exceed the memory bound of current and next
generation GPUs. For GPU implementation of 3D RTM, the practical way is using
the random boundary condition (Liu et al 2013a)) or saving on the disk. A deeper
discussion of the practical issues for GPU implementation of RTM can be found in
Liu et al, (2012a).

ACKNOWLEDGMENTS

The work of the first author is supported by China Scholarship Council during his visit
to The University of Texas at Austin. This work is sponsored by National Science
Foundation of China (No. 41390454). We wish to thank Sergey Fomel and two
anonymous reviewers for constructive suggestions, which lead to massive amount of
revision and improvement in this paper. The code of even-order GPU-based prestack
RTM (combined with CPML boundary condition) using effective boundary saving
strategy is available alongside this paper. The RTM examples are reproducible with



from rsf.proj import *

# Download velocity model from the data server
##############################################
vstr = 'sigsbee2a_stratigraphy.sgy'
Fetch(vstr,'sigsbee')
Flow('zvstr',vstr,'segyread read=data')

Flow('vel','zvstr',
     '''
     put d1=0.025 d2=0.025 o1=0 o2=10.025 
     label1=Depth unit1=kft label2=Lateral unit2=kft |
     scale dscale=0.001 
     ''')

Result('sigsbee','vel',
       '''
       grey title=Velocity titlesz=7 color=j
       screenratio=0.375 screenht=4 labelsz=5 scalebar=y
       mean=y bartype=v barlabel="V" barunit="kft/s"
       ''')


Flow('simag1 simag2','vel',
	'''
	gpurtm imag2=${TARGETS[1]} NJ=6 phost=75
	fm=15 dt=0.0008 tdmute=300
	nt=13000 ns=55 ng=301 
	jsx=50 jsz=0 jgx=1 jgz=0 
	sxbeg=150 szbeg=1 gxbeg=0 gzbeg=1 
	vmute=4.72
	''')

Result('simag1','grey allpos=n title="correlation"')
Result('simag2','grey allpos=n title="normalized_correlation"')

End()




16 Yang et al. TCCS-7

Lateral (kft)
20 30 40 50 60 70 80 90

(@) § S N Y A AT/ ATV T AT T T A AT AT S AT T BT A AT AT TS T T R A AT A T T T

Depth (kft)
25 20 15 10

30

correlation

Lateral (kft)
20 30 40 o0 60 70 80 90

Depth (kft)
15 10

20

25

30

normalized correlation

Figure 10: RTM result of Sigsbee model using effective boundary saving
scheme (staggered grid finite difference). (a) Result of cross-correlation imag-
ing condition.  (b) Result of normalized cross-correlation imaging condition.
gpurtm/sigsbee/ simagl,simag2




TCCS-7 Boundary saving in GPU-based RTM 17

the help of Madagascar software package (Fomel et al. 2013).

REFERENCES

Abdelkhalek, R., H. Calandra, O. Coulaud, J. Roman, and G. Latu, 2009, Fast seismic
modeling and reverse time migration on a gpu cluster: International Conference on
High Performance Computing & Simulation, HPCS’09., IEEE, 36—43.

Baysal, E., D. D. Kosloff, and J. W. Sherwood, 1983, Reverse time migration: Geo-
physics, 48, 1514-1524.

Biondi, B., 2006, 3d seismic imaging: Society of Exploration Geophysicists.

Boonyasiriwat, C., G. Zhan, M. Hadwiger, M. Srinivasan, and G. Schuster, 2010, Mul-
tisource reverse-time migration and full-waveform inversion on a gpgpu: Presented
at the 72nd EAGE Conference & Exhibition.

Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef, 1985, A nonreflecting boundary
condition for discrete acoustic and elastic wave equations: Geophysics, 50, 705-708.

Clapp, R. G., 2009, Reverse time migration with random boundaries: 79th Annual
International Meeting, SEG Expanded Abstracts, 2809-2813.

Clapp, R. G., H. Fu, and O. Lindtjorn, 2010, Selecting the right hardware for reverse
time migration: The Leading Edge, 29, 48-58.

Collino, F., and C. Tsogka, 2001, Application of the perfectly matched absorbing layer
model to the linear elastodynamic problem in anisotropic heterogeneous media:
Geophysics, 66, 294-307.

Dussaud, E., W. W. Symes, P. Williamson, L. Lemaistre, P. Singer, B. Denel, and A.
Cherrett, 2008, Computational strategies for reverse-time migration: SEG Annual
meeting.

Foltinek, D., D. Eaton, J. Mahovsky, P. Moghaddam, and R. McGarry, 2009,
Industrial-scale reverse time migration on gpu hardware: Presented at the 2009
SEG Annual Meeting.

Fomel, S., P. Sava, I. Vlad, Y. Liu, and V. Bashkardin, 2013, Madagascar: open-source
software project for multidimensional data analysis and reproducible computational
experiments: Journal of Open Research Software, 1, e8.

Fornberg, B., 1988, Generation of finite difference formulas on arbitrarily spaced grids:
Mathematics of computation, 51, 699-706.

Fu, H., and R. G. Clapp, 2011, Eliminating the memory bottleneck: an fpga-based
solution for 3d reverse time migration: Proceedings of the 19th ACM/SIGDA in-
ternational symposium on Field programmable gate arrays, ACM, 65-74.

Guitton, A., B. Kaelin, and B. Biondi, 2006, Least-squares attenuation of reverse-
time-migration artifacts: Geophysics, 72, S19-S23.

Guo, M., Y. Chen, and H. Wang, 2013, The application of gpu-based tti rtm in a
complex area with shallow gas and fault shadow-a case history: Presented at the
75th EAGE Conference & Exhibition.

Hussain, T., M. Pericas, N. Navarro, and E. Ayguadé, 2011, Implementation of a
reverse time migration kernel using the hce high level synthesis tool: International
Conference on Field-Programmable Technology (FPT), IEEE, 1-8.



18 Yang et al. TCCS-7

Ji, Q., S. Suh, and B. Wang, 2012, Iterative velocity model building using gpu based
layer-stripping tti rtm, in SEG Technical Program Expanded Abstracts 2012: So-
ciety of Exploration Geophysicists, 1-5.

Kim, Y., Y. Cho, U. Jang, and C. Shin, 2013, Acceleration of stable {TTI} p-wave
reverse-time migration with {GPUs}: Computers & Geosciences, 52, 204 — 217.
Komatitsch, D., G. Erlebacher, D. Géddeke, and D. Michéa, 2010a, High-order finite-
element seismic wave propagation modeling with mpi on a large gpu cluster: Jour-

nal of Computational Physics, 229, 7692-7714.

Komatitsch, D., and R. Martin, 2007, An unsplit convolutional perfectly matched
layer improved at grazing incidence for the seismic wave equation: Geophysics, 72,
SM155-SM167.

Komatitsch, D., D. Michéa, G. Erlebacher, and D. Goddeke, 2010b, Running 3d
finite-difference or spectral-element wave propagation codes 25x to 50x faster using
a gpu cluster: Presented at the 72nd EAGE Conference & Exhibition.

Leader, C., and R. Clapp, 2012, Least squares reverse time migration on gpus-
balancing io and computation: Presented at the 74th EAGE Conference & Ex-
hibition.

Lin, C., and H. Wang, 2012, Application of gpus in seismic depth migration: Pre-
sented at the 74th EAGE Conference & Exhibition.

Liu, G., Y. Liu, L. Ren, and X. Meng, 2013a, 3d seismic reverse time migration on
gpgpu: Computers & Geosciences, 59, 17 — 23.

Liu, H., R. Ding, L. Liu, and H. Liu, 2013b, Wavefield reconstruction methods for
reverse time migration: Journal of Geophysics and Engineering, 10, 015004.

Liu, H., B. Li, H. Liu, X. Tong, Q. Liu, X. Wang, and W. Liu, 2012a, The issues of
prestack reverse time migration and solutions with graphic processing unit imple-
mentation: Geophysical Prospecting, 60, 906-918.

Liu, H., H. Liu, X. Shi, R. Ding, and J. Liu, 2012b, Gpu based pspi one-way wave
high resolution migration, in SEG Technical Program Expanded Abstracts 2012:
Society of Exploration Geophysicists, 1-5.

Liu, H.-w., H. Liu, X.-L.. Tong, and Q. Liu, 2012¢, A fourier integral algorithm and
its gpu/cpu collaborative implementation for one-way wave equation migration:
Computers & Geosciences, 45, 139-148.

Liu, W., T. Nemeth, A. Loddoch, J. Stefani, R. Ergas, L. Zhuo, B. Volz, O. Pell, and J.
Huggett, 2009, Anisotropic reverse-time migration using co-processors: Presented
at the SEG Houston International Exposition. SEG.

McMechan, G., 1983, Migration by extrapolation of time-dependent boundary values:
Geophysical Prospecting, 31, 413-420.

Medeiros, V., R. Rocha, A. Ferreira, J. Correia, J. Barbosa, A. Silva-Filho, M. Lima,
R. Gandra, and R. Braganca, 2011, Fpga-based accelerator to speed-up seismic
applications: 2011 Simpasio em Sistemas Computacionais (WSCAD-SSC), IEEE,
9-9.

Michéa, D., and D. Komatitsch, 2010, Accelerating a three-dimensional finite-
difference wave propagation code using gpu graphics cards: Geophysical Journal
International, 182, 389-402.

Micikevicius, P., 2009, 3d finite difference computation on gpus using cuda: Pro-



TCCS-7 Boundary saving in GPU-based RTM 19

ceedings of 2nd Workshop on General Purpose Processing on Graphics Processing
Units, ACM, 79-84.

Nvidia, C., 2011, Nvidia cuda ¢ programming guide.

Suh, S., and B. Wang, 2011, Expanding domain methods in gpu based tti reverse
time migration, in SEG Technical Program Expanded Abstracts 2011: Society of
Exploration Geophysicists, 3460-3464.

Suh, S. Y., A. Yeh, B. Wang, J. Cai, K. Yoon, and Z. Li, 2010, Cluster programming
for reverse time migration: The leading edge, 29, 94-97.

Symes, W. W., 2007, Reverse time migration with optimal checkpointing: Geophysics,
72, SM213-SM221.

Weiss, R. M., and J. Shragge, 2013, Solving 3d anisotropic elastic wave equations on
parallel gpu devices: Geophysics, 78, F7-F15.

Ying, S., T. Dong-sheng, and K. Xuan, 2013, Denoise investigation on prestack re-
verse time migration based on gpu/cpu collaborative parallel accelerating compu-
tation: Fifth International Conference on Computational and Information Sciences
(ICCIS), IEEE, 30-33.

Yoon, K., C. Shin, S. Suh, L. R. Lines, and S. Hong, 2003, 3d reverse-time migration
using the acoustic wave equation: An experience with the seg/eage data set: The
Leading Edge, 22, 38-41.



20

Yang et al.

TCCS-7



National Engineering Laboratory for Offshore Oil Ezxploration, XJTU, August 31, 2021

A graphics processing unit implementation of
time-domain full-waveform inversion

Pengliang Yang*, Jinghuai Gao*, and Baoli I/chgT

ABSTRACT

The graphics processing unit (GPU) has become a popular device for seismic
imaging and inversion due to its superior speedup performance. In this paper
we implement GPU-based full waveform inversion (FWI) using the wavefield
reconstruction strategy. Because the computation on GPU is much faster than
CPU-GPU data communication, in our implementation the boundaries of the
forward modeling are saved on the device to avert the issue of data transfer
between host and device. The Clayton-Enquist absorbing boundary is adopted
to maintain the efficiency of GPU computation. A hybrid nonlinear conjugate
gradient algorithm combined with the parallel reduction scheme is utilized to do
computation in GPU blocks. The numerical results confirm the validity of our
implementation.

INTRODUCTION

The classical time-domain full waveform inversion (FWI) was originally proposed
by [Tarantola, (1984) to refine the velocity model by minimizing the energy in the
difference between predicted and observed data in the least-squares sense (Symes|,
2008)). It was further developed by [Tarantolal (1986) with applications to elastic cases
(Pica et al. [1990). After Pratt et al| (1998)) proposed frequency domain FWI, the
multiscale inversion became an area of active research, and provided a hierarchical
framework for robust inversion. The Laplace-domain FWI and the Laplace-Fourier
domain variant have also been developed by [Shin and Chal (2008, 2009). Until now,
building a good velocity model is still a challenging problem and attracts increasing
effort of geophysicists (Virieux and Opertol, 2009).

There are many drawbacks in FWI, such as the non-linearity, the non-uniqueness
of the solution, as well as the expensive computational cost. The goal of FWI is to
match the synthetic and the observed data. The minimization of the misfit func-
tion is essentially an iterative, computationally intensive procedure: at each iteration
one has to calculate the gradient of the objective function with respect to the model
parameters by cross correlating the back propagated residual wavefield with the corre-
sponding forward propagated source wavefield. The forward modeling itself demands

*e-mail: ypl.2100@gmail.com, jhgao@mail.xjtu.edu

21



22 Yang et al. TCCS-7

large computational efforts, while back propagation of the residual wavefield has large
memory requirements to access the source wavefield.

Recent advances in computing capability and hardware makes FWI a popular
research subject to improve velocity models. As a booming technology, graphics
processing unit (GPU) has been widely used to mitigate the computational drawbacks
in seismic imaging (Micikevicius, [2009; Yang et al., 2014) and inversion (Boonyasiriwat
et al., 2010; [Shin et al., 2014)), due to its potential gain in performance. One key
problem for GPU implementation is that the parallel computation is much faster
while the data communication between host and device always takes longer time.
In this paper we report a 2D implementation of GPU-based FWI using a wavefield
reconstruction strategy. The boundaries of the forward modeling are saved on the
device to avert the issue of CPU-GPU data transfer. Shared memory on the GPU is
used to speedup the modeling computation. A hybrid nonlinear conjugate gradient
method is adopted in the FWI optimization. In each iteration, a Gaussian shaping
step is employed to remove noise in the computed gradient. We demonstrate the
validity and the relatively superior speedup of our GPU implementation of FWI
using the Marmousi model.

FWI AND ITS GPU IMPLEMENTATION
FWI: data mismatch minimization

In the case of constant density, the acoustic wave equation is specified by

1 p(x 1)
v2(x) ot?

— Vp(x, ;%) = fo(x,t;%,). (1)

where we have set fq(x,t;%s) = f(t')0(x — x5)0(t — t'). According to the above
equation, a misfit vector Ap = p.,; — Pops can be defined by the differences at the
receiver positions between the recorded seismic data p,,, and the modeled seismic
data p,,; = f(m) for each source-receiver pair of the seismic survey. Here, in the
simplest acoustic velocity inversion, f(-) indicates the forward modeling process while
m corresponds to the velocity model to be determined. The goal of FWI is to match
the data misfit by iteratively updating the velocity model. The objective function
taking the least-squares norm of the misfit vector Ap is given by

ng ns tmax

1 1
E(m) = iApTAp = §||pcal_pabs|’2 ZZ/ dt’pcal XTat XS) pobs(xr7t;xs)|2

r=1 s=1
(2)
where ns and ng are the number of sources and geophones, 1 denotes the adjoint
operator (conjugate transpose). The recorded seismic data is only a small subset of
the whole wavefield at the locations specified by sources and receivers.



TCCS-7 GPU implementation of FWI 23

The gradient-based minimization method updates the velocity model according
to a descent direction dy:
meg, 1 = 1My + Oékdk. (3)

where k denotes the iteration number. By neglecting the terms higher than the 2nd
order, the objective function can be expanded as

1
E(myy,) = E(my + apdy) = E(my) + ap(VE(my), dy) + §azdLdek, (4)

where Hy, stands for the Hessian matrix; (-, -) denotes inner product. Differentiation
of the misfit function F(my, 1) with respect to ay gives

o VEm)  (de VEmm) (T P — Pl
diH,d, (Jrdy, Jrpdy) (Jedp, Jpdy)

(5)

A — —

in which we use the approximate Hessian H, := H, = JLJk and Vo, F = J'Ap,
according to equation . A detailed derivation of the minimization process is
given in Appendix A.

Nonlinear conjugate gradient method

The conjugate gradient (CG) algorithm decreases the misfit function along the con-
jugate gradient direction:

 [~VE(my), k=0
= {—VE(mk) + Bpdi—1, k>1 (©)

There are a number of ways to compute 3. We use a hybrid a hybrid scheme combing
Hestenes-Stiefel method and Dai-Yuan method (Hager and Zhang;, 2006)

Br = max(0, min(3°, sPY)). (7)
in which
ns _ (VE(my), VE(my) — VE(my 1))
k <dk_1, VE(mk) — VE(mk_1)> (8)
py _ (VE(my), VE(my))

k - <dk_1, VE(mk) — VE(mk_l))

This provides an automatic direction reset while avoiding over-correction of [ in con-
jugate gradient iteration. It reduces to steepest descent method when the subsequent
search directions lose conjugacy. The gradient of the misfit function w.r.t. the model
is given by (Bunks et al., 1995])

fmas a2pcal X t; Xs)

U3 Z Z / Tpres (Xm t; Xs)dt (9)

r=1 s=1




24 Yang et al. TCCS-7

where p,..s(x,t;xs) is the back propagated residual wavefield, see the Appendix B
and C for more details. A Gaussian smoothing operation plays an important role in
removing the noise in the computed gradient. A precondition is possible by normal-
izing the gradient by the source illumination which is the energy of forward wavefield
accounting for geometrical divergence (Gauthier et al., [1986; Bai et al., [2014)):

VE,,
VE(Hlk) = -
\/Zszl o Pl ty wg)dt + 2

where v is a stability factor to avoid division by zero. To obtain a reasonable step
size ay, in equation (85), we estimate a small step length e proposed by [Pica et al.

(1990):

(10)

max(|my|)

di|) <
max(e|dg|) 100

(11)

and the Taylor approximation

f(mk + Edk) — f(mk)
€

We summarize the FWI flowchart in Figure

Wavefield reconstruction via boundary saving

One key problem of GPU-based implementations of FWI is that the computation
is always much faster than the data transfer between the host and device. Many
researchers choose to reconstruct the source wavefield instead of storing the modeling
time history on the disk, just saving the boundaries (Dussaud et al.,[2008; Yang et al.,
2014)). For 2N-th order finite difference, regular grid scheme needs to save N points on
each side (Dussaud et al., 2008]), while staggered-grid scheme required at least 2N — 1
points on each side (Yang et al., [2014). In our implementation, we use 2nd order
regular grid finite difference because FWI begins with a rough model and velocity
refinement is mainly carried out during the optimization. Furthermore, high-order
finite differences and staggered-grid schemes do not necessarily lead to FWI converge
to an accurate solution while requiring more compute resources. A key observation
for wavefield reconstruction is that one can reuse the same template by exchanging
the role of p**1 and p*~!. In other words, for forward modeling we use

PP = 2pF 2 ART 2R (13)
while for backward reconstruction we use

PEl = 9pF _ Rt L 2 A2k, (14)
The wavefield extrapolation can be stepped efficiently via pointer swap, i.e.,

foriz iz.. po() = 2p1(:) = po(:) + ()AL V2py ()

15
ptr = po; po = p1;p1 = ptr; //swap pointer (15)



TCCS-7 GPU implementation of FWI 25

initialize

with starting
model

output )
FWI result No k<niter?

Yes update
velocity
model, k++

1)generate synthetic seismo-
gram via modeling, 2) save the

effective boundaries, and 3)
compute the residual wavefield
estimate
stepsize ag:
redo forward
1)reconstruct source wavefield modﬁhng
with saved boundaries, 2)back (us shots)
propagate residual wavefield,
and 3) calculate the gradient
calculate estimate trial
loop over No Br and the stepsize €
shots: is++ Yes conjugate and a test

gradient velocity

Figure 1: Backward reconstruction can be realized using the saved boundaries. Note

that no absorbing boundary condition is applied on the top boundary of the model
in the forward modeling.



26 Yang et al. TCCS-7

where () = [iz,iz], po and p; are p**1/pF~1 and p*, respectively.

Note that all the computation is done on GPU blocks. In our codes, the size
of the block is set to be 16x16. We replicate the right- and bottom-most cols/rows
enough times to bring the total model size up to an even multiple of block size. As
shown in Figure [2| the whole computation area is divided into 16x16 blocks. For
each block, we use a 18x18 shared memory array to cover all the grid points in this
block. It implies that we add a redundant point on each side, which stores the value
from other blocks, as marked by the window in Figure When the computation
is not performed for the interior blocks, special care needs to be paid to the choice
of absorbing boundary condition (ABC) in the design of FWI codes. Allowing for
efficient GPU implementation, we use the 45° Clayton-Enquist ABC proposed in
(Clayton and Engquist| (1977) and |[Engquist and Majda| (1977). For the left boundary,
it is

Py 1 it
oxdt v ot2 2922

which requires only one layer to be saved on each side for wavefield reconstruction.
The equations for right and bottom boundary can also be written in a similar way.
To simulate free surface boundary condition, no ABC is applied to the top boundary.
The same technique has been adopted by |Liu et al.| (2013) for reverse time migration.
We believe its application to FWI is valuable and straightforward.

(16)

z

Figure 2: 2D blocks in GPU memory. The marked window indicates that the shared
memory in every block needs to be extended on each side with halo ghost points
storing the grid value from other blocks.



TCCS-7 GPU implementation of FWI 27

Parallel reduction on CUDA blocks

Recognizing that hardware serializes divergent thread execution within the same
warp, but all threads within a warp must complete execution before that warp can
end, we use a parallel reduction technique to find the maximum of the model vector
my, and the descent vector d;, as well as summation for the inner product in the
numerator and the denominator of ;. A sequential addressing scheme is utilized be-
cause it is free of conflict (Harris et al., [2007). As shown in Figure[3] parallel reduction
approach builds a summation tree to do stepwise partial sums. In each level half of
the threads will perform reading from global memory and writing to shared memory.
The required number of threads will decrease to be half of previous level. It reduces
the serial computational complexity from O(N) to O(log,(V)): In each step many
threads perform computation simultaneously, leading to low arithmetic intensity. In
this way, we expect a significant improvement in computational efficiency.

X

Figure 3: Parallel reduction on GPU block. It reduces a serial computational com-
plexity O(N) to be O(log,(N)) steps: in each step many threads perform computation
simultaneously, leading to low arithmetic intensity.

NUMERICAL RESULTS
Exact reconstruction with saved boundaries

Since we are advocating the wavefield reconstruction method in FWI, the foremost
thing is to demonstrate that the boundary saving strategy does not introduce any
kind of errors or artifacts for the wavefield to be reconstructed. To attain this goal, we
design a constant velocity model: velocity=2000 m/s, nz = nx = 200, Az = Az =5



28 Yang et al. TCCS-7

m. A 15 Hz Ricker wavelet is taken as the source and is placed at the center of the
model. We do the modeling process for 1000 steps with time interval At = 1 ms. We
record the modeled wavefield snap at 0.28 s and 0.4 s, as shown in the top panels of
Figure [10 The figure shows that at time 0.4 s, the wavefield has already spread to
the boundaries which absorb most of the reflection energy. In the backward steps, the
reconstructed shot snaps at 0.4 s and 0.28 s are also recorded, shown in the bottom
panels of Figure As can be seen from the figure, the backward reconstruction
starts from the boundaries (bottom left) and gradually recovers the interior wavefield
(bottom right).

Lateral (km) Lateral (km)
200 400 600 800

—

200 400 600 800

0
0

200
200

=]
o
~

Depth (km)
400

600

E

e
=
=
)

o,

3]
a

600

800
800

S

Forward:t=0.28s Forward:t=0.4s

Lateral (km) Lateral (km)
200 400 600 800 200 400 600 800

—

0
0

200
200

Depth (km)
400
Depth (km)
400

600

o
[}
©

800
800

S

Backward:t=0.4s Backward:t=0.28s

Figure 4: Backward reconstruction can be realized using the saved boundaries. Note
that no absorbing boundary condition is applied on the top boundary of the model
in the forward modeling. ‘gpufwi /tbrec/ th

Speedup performance

The acceleration of GPU implementation on advanced computer hardware is a key
concern of many researchers. There are many factors which may accelerate the FWI
computation. Compared with saving the wavefield on disk, wavefield reconstruction
will accelerate the GPU computing because no CPU-GPU data transfer is needed
any more. The parallel reduction to find the maxium value of model vector my
and descent direction vector dj is another factor to speedup the FWI computation.



from rsf.proj import *

Flow('vel',None,
     	'''
     	math output=2000 n1=200 n2=200 d1=5 d2=5
     	label1=x1 unit1=m label2=x2 unit2=m 
     	''')


Flow('wavf wavb','vel',
	'''	
	sffbrec back=${TARGETS[1]} csdgather=n fm=15 dt=0.001 ns=1 ng=200 nt=800
	sxbeg=100 szbeg=100 jsx=37 jsz=0 gxbeg=0 gzbeg=1 jgx=1 jgz=0
	''')


Plot('wavf','grey gainpanel=all title=Forward scalebar=y color=j',view=1)
Plot('wavb','grey gainpanel=all title=Backward scalebar=y color=j',view=1)

Plot('snap1f','wavf',
	'''
	window n3=1 min3=0.28 |grey title="Forward:t=0.28s" label1=Depth unit1=km 
	label2=Lateral unit2=km screenratio=1 
	''')
Plot('snap2f','wavf',
	'''
	window n3=1 min3=0.4 |grey title="Forward:t=0.4s" label1=Depth unit1=km 
	label2=Lateral unit2=km screenratio=1 
	''')

Plot('snap1b','wavf',
	'''
	window n3=1 min3=0.28 |grey title="Backward:t=0.28s" label1=Depth unit1=km 
	label2=Lateral unit2=km screenratio=1 
	''')
Plot('snap2b','wavf',
	'''
	window n3=1 min3=0.4 |grey title="Backward:t=0.4s" label1=Depth unit1=km 
	label2=Lateral unit2=km screenratio=1
	''')
Result('fb','snap1f snap2f snap2b snap1b','TwoColumns')


End()



TCCS-7 GPU implementation of FWI 29

However, among these factors, the forward modeling takes most of the computing
time. Each iteration needs four times of forward modeling: two of them are for
sources and receivers; one is performed for wavefield reconstruction and gradient
calculation, and another one is to estimate the step length . Therefore, we only
focus on the speedup obtained in the forward modeling procedure.

To do the performance analysis, we run the sequential implementation CPU code
and parallel multi-thread GPU code of forward modeling for 1000 time steps. We
estimate the average time cost of 5 shots for different data sizes. Because the GPU
block size is set to be 16x16. To make the comparison fair, we generate test models
whose size is of multiple 16x16 blocks. The size of the test model is choosen to be
nx-nz, nr =nz =1-160, where ¢ = 1,...,7 is an integer. We only have a NVS5400
GPU card (compute capability 2.1, GDDR3) run on a laptop. Even so, compared
with sequential implementation on host, we still achieve approximately 5.5-6 times
speedup on the GPU device, as shown in Figure [5

Time cost for different datasize

18

14 16

12

crPul,.

10

8

Time (s)

6

GPU

//

I

200 400 600 800 1000
nx(Datasize: nx=nz)

Figure 5: Comparison of the time cost for CPU- vs. GPU implementation un-
der different model sizes with one shot, 1000 time steps of forward modeling.
’ gpufwi/speedup/ timecost ‘

Marmousi model

We use the Marmousi model for the benchmark test, as shown in the top panel of
Figure[dl FWI tacitly requires a good starting model incorporated with low frequency
information. 21 shots are deployed as the observations in the FWI, while 3 of them
are shown in Figure [f] We use a starting model (bottom panel of Figure [4]) obtained
by smoothing the original model 20 times with a 5x5 window.



from rsf.proj import *


# First, demonstrate that GPU implementation generate same result as accurate 
# as the CPU output up to floating precision (1e-7)
Flow('layer1',None,'math output=1600 n1=80 n2=160 d1=5 d2=5')
Flow('layer2',None,'math output=1800 n1=80 n2=160 d1=5 d2=5')
Flow('vel','layer1 layer2','cat axis=1 ${SOURCES[1]}')
Result('vel',
	'''
	sfput label1=Depth unit1=m label2=Distance unit2=m | 
	grey allpos=y scalebar=y color=j minval=1500 maxval=2000
	''')  

Flow('shotsa checka','vel',
	'''
	sfgenshots check=${TARGETS[1]} csdgather=n fm=15 amp=1 dt=0.0015 ns=1 ng=160 nt=800
	sxbeg=80 szbeg=80 jsx=10 jsz=0 gxbeg=0 gzbeg=3 jgx=1 jgz=0 chk=y kt=100
	''')

Flow('shotsb checkb','vel',
	'''
	sfmodeling2d check=${TARGETS[1]} csdgather=n fm=15 amp=1 dt=0.0015 ns=1 ng=160 nt=800
	sxbeg=80 szbeg=80 jsx=10 jsz=0 gxbeg=0 gzbeg=3 jgx=1 jgz=0 chk=y kt=100
	''')
Plot('checka','grey color=g scalebar=y')
Plot('checkb','grey color=g scalebar=y')
Plot('errab','checka checkb','add ${SOURCES[1]} scale=1,-1|grey color=g scalebar=y')
Result('allab','checka checkb errab','SideBySideIso')

# Second, demonstrate GPU is much faster especially when the model size is large!!
# Be careful: The GPU block size is 16x16. To make the comparison fair, you need 
# the size of the test model to be multiple 16x16. We only care about the time cost here. 

for i in range(1,8):
	nz=160*i
	nx=160*i	
	vv="v%d"%i
	shota="shota%d"%i
	timea="timea%d"%i
	shotb="shotb%d"%i
	timeb="timeb%d"%i

	Flow(vv,None,'math output=1600 n1=%d n2=%d d1=5 d2=5'%(nz,nx))
	Flow(shota+' '+timea,vv,
		'''
		sfgenshots time=${TARGETS[1]} csdgather=n fm=15 amp=1 dt=0.0015 ns=5 ng=%d nt=1000
		sxbeg=5 szbeg=2 jsx=10 jsz=0 gxbeg=0 gzbeg=3 jgx=1 jgz=0 
		'''%(nx))
	Flow(shotb+' '+timeb,vv,
		'''
		sfmodeling2d time=${TARGETS[1]} csdgather=n fm=15 amp=1 dt=0.0015 ns=5 ng=%d nt=1000
		sxbeg=5 szbeg=2 jsx=10 jsz=0 gxbeg=0 gzbeg=3 jgx=1 jgz=0
		'''%(nx))

Flow('timealla','timea1 timea2 timea3 timea4 timea5 timea6 timea7',
	'''cat axis=1 ${SOURCES[1:7]}|put d1=160 o1=160''')
Flow('timeallb','timeb1 timeb2 timeb3 timeb4 timeb5 timeb6 timeb7',
	'''cat axis=1 ${SOURCES[1:7]}|put d1=160 o1=160''')
Plot('timeall','timealla timeallb',
	'''
	cat axis=2 ${SOURCES[1]}|
	graph dash=0,1 grid=y plotfat=3 label2=Time unit2=s 
	label1="nx(Datasize: nx=nz)" unit1= title="Time cost for different datasize"
	''')
Plot('s0',None,'box font=2 x0=8.5 y0=6 label="CPU" xt=0.000000 yt=0.000000')
Plot('s1',None,'box font=2 x0=8.5 y0=2.5 label="GPU" xt=0.000000 yt=0.000000')
Result('timecost','timeall s0 s1','Overlay')

End()



30 Yang et al. TCCS-7

The FWTI is carried out for 300 iterations. A 10 Hz Ricker wavelet is deployed in our
modeling and inversion. We record all the updated velocity to make sure the velocity
refinement is going on during the iterative procedure. The updated velocity model
at iterations 1, 20, 50, 100, 180 and 300 is displayed in Figure[6] Figure [7] describes
the decreasing misfit function in iterations. As can be seen from the Figures [6] and [7]
the velocity model changes significantly at the early stage. Later iterations in FWI
make some improvement on small details for the velocity model. More iterations will
refine the model further, however, gaining less and less improvement.

Lateral (m)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

o
(@)
(@)
0
o
~8 =
E- 2=
= B
& e
28 e
(@) ™
[aV]
o
(@)
o
(@) [aV]
o J
O .
™ Marmousi model
Lateral (m)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
(@)
(@)
o
o o
S <
~3
5= 0
= 2
= SE
S o =
Qo @
o
[aV]
(@)
o
o
[aV]

3000

Smoothed Marmousi model

Figure 6: Top: The original Marmousi is downsampled by a factor of 3 along depth
and lateral direction. The shots are generated according to the subsampled Marmousi
model. Bottom: The starting model of FWI for Marmousi model, which is obtained by
smoothing the original model 20 times with a 5x5 window. ‘ gpufwi/marmtest/ marm‘

CONCLUSION

We have implemented GPU-based FWI using the wavefield reconstruction strategy,
which averts the issue of CPU-GPU data transfer. The Clayton-Enquist absorbing



from rsf.proj import *

# marmvel.hh contains Marmousi model which can be downloaded from the server using Fetch.
Fetch('marmvel.hh','marm')

Flow('vel','marmvel.hh',
	'''
	dd form=native | window j1=3 j2=3 | 
     	put label1=Depth  unit1=m label2=Lateral unit2=m
	''')
Plot('vel',
	'''
	grey color=j mean=y title="Marmousi model" scalebar=y bartype=v barlabel="V" 
	barunit="m/s" screenratio=0.45 color=j labelsz=10 titlesz=12
	''')

Flow('shots','vel',
	'''
	sfgenshots csdgather=n fm=10 amp=1 dt=0.0015 ns=21 ng=767 nt=2800
	sxbeg=4 szbeg=2 jsx=37 jsz=0 gxbeg=0 gzbeg=3 jgx=1 jgz=0
	''')
Plot('shots','grey color=g title=shot label2= unit2=',view=1)


Plot('shot4','shots','window n3=1 f3=4| grey color=g title=shot4 label2=Lateral unit2=m')
Plot('shot11','shots','window n3=1 f3=11| grey color=g title=shot11 label2=Lateral unit2=m')
Plot('shot17','shots','window n3=1 f3=17| grey color=g title=shot17 label2=Lateral unit2=m')
Result('shotsnap','shot4 shot11 shot17','SideBySideAniso',vppen='txscale=2.')

# smoothed velocity model   
Flow('smvel','vel','smooth repeat=10 rect1=10 rect2=20')
Plot('smvel',
     '''
     grey title="Smoothed Marmousi model" wantitle=y allpos=y color=j
     pclip=100 scalebar=y bartype=v barlabel="V" barunit="m/s"
	screenratio=0.45 color=j labelsz=10 titlesz=12
     ''' )

Result('marm','vel smvel','TwoRows')

# use the over-smoothed model as initial model for FWI
Flow('vsnaps grads objs illums','smvel shots',
	'''
	sfgpufwi shots=${SOURCES[1]} grads=${TARGETS[1]} objs=${TARGETS[2]}
	illums=${TARGETS[3]} niter=300 precon=y
	''')
Result('vsnaps',
	'''
	grey title="Updated velocity" allpos=y color=j pclip=100 
	scalebar=y bartype=v barlabel="V" barunit="m/s" 
	''')
Plot('vsnap1','vsnaps', 
	'''
	window n3=1|grey title="Updated velocity, iter=1" allpos=y color=j pclip=100 
	scalebar=y bartype=v barlabel="V" barunit="m/s" labelsz=10 titlesz=12
	''')
Plot('vsnap20','vsnaps', 
	'''
	window n3=1 f3=19|grey title="Updated velocity, iter=20" allpos=y color=j pclip=100 
	scalebar=y bartype=v barlabel="V" barunit="m/s" labelsz=10 titlesz=12
	''')
Plot('vsnap50','vsnaps', 
	'''
	window n3=1 f3=49|grey title="Updated velocity, iter=50" allpos=y color=j pclip=100 
	scalebar=y bartype=v barlabel="V" barunit="m/s" labelsz=10 titlesz=12
	''')

Plot('vsnap100','vsnaps', 
	'''
	window n3=1 f3=99|grey title="Updated velocity, iter=100" allpos=y color=j pclip=100 
	scalebar=y bartype=v barlabel="V" barunit="m/s" labelsz=10 titlesz=12
	''')
Plot('vsnap180','vsnaps', 
	'''
	window n3=1 f3=179|grey title="Updated velocity, iter=180" allpos=y color=j pclip=100 
	scalebar=y bartype=v barlabel="V" barunit="m/s" labelsz=10 titlesz=12
	''')
Plot('vsnap300','vsnaps', 
	'''
	window n3=1 f3=299|grey title="Updated velocity, iter=300" allpos=y color=j pclip=100 
	scalebar=y bartype=v barlabel="V" barunit="m/s" labelsz=10 titlesz=12
	''')

Result('vsnap','vsnap1 vsnap20 vsnap50 vsnap100 vsnap180 vsnap300','TwoRows')

#########################################################################
#Plot('vsnapa','vsnap1 vsnap100','OverUnderAniso',vppen='txscale=2')
#Plot('vsnapb','vsnap20 vsnap180','OverUnderAniso',vppen='txscale=2')
#Plot('vsnapc','vsnap50 vsnap300','OverUnderAniso',vppen='txscale=2')
#Result('vsnap','vsnapa vsnapb vsnapc','SideBySideAniso',vppen='txscale=1.')

Result('grads','grey title="Updated gradient" scalebar=y color=j ')
Result('illums','grey title="illumination" scalebar=y color=j')

Result('objs',
	'''
	sfput n2=1 label1=Iteration unit1= unit2= label2= |
	graph title="Misfit function" dash=0 plotfat=5  grid=y yreverse=n
	''')


End()



TCCS-7 GPU implementation of FWI 31

Lateral (m) Lateral (m) Lateral (m)

0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
| | | | | | | | | | | |

shotl1 shot17?

Figure 7: 21 shots were deployed in the FWI. Here, shots 4, 11 and 17 are shown
from left to right. ‘gpufwi /marmtest/ shotsnap

Distance (m) Distance (m) Distance (m)
2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000

[=} [=}
o [=} [=}
(=} (=} o
=3 = o <+ =) <
=8 A =8 =8
E - = E - o7 E - o7
~ ~ ~ S ~ S
5 g8 = R = 58
a =1 a e
o 0> v > v >
a a o a o
o o
[=} o
) N ©
S
= B =) S o S
g g g g g
®  Updated velocity, iter=1 ®  Updated velocity, iter=20 - @  Updated velocity, iter=50
Distance (m) Distance (m) Distance (m)
Q 2000 4000 6000 8000 ° 2000 4000 6000 2000 4000 6000
) . - - — . - . = .
o S e =
o
] g ]
(=} =}
g (o] [fe}
o [=} o
~8 5 ~S 3 ~8 g
B @ E - S E - B
= g = o2 A e
5 =N s SE 5 s 8
a, Y =] [ o
v o > © o> [T =3 Mo
[ale) (=] a [S =)
o IS] o S o
aQ o o o« g
o0 g 8
[=] o
S =4 o
§ ol S § S
®  Updated velocity, iter=100

Figure 8: The updated velocity model at iterations 1, 20, 50, 100, 180 and 300.
gpufwi/marmtest/ vsnap




32 Yang et al. TCCS-7

Misfit function

©

o

©

o

=

o T r—

© 0 50 100 150 200 250 300

[teration

Figure 9: The misfit function decreases with iteration. ’gpufwi /marmtest/ ob js‘

boundary was utilized to maintain the efficiency of GPU computation. A hybrid
nonlinear conjugate gradient method combined with parallel reduction technique was
adopted in the FWI optimization. The validity of our implementation for GPU-based
FWI was demonstrated using a numerical test.

DISCUSSION

It is important to point out that FWI can be accelerated in many ways. A good
choice of preconditioning operator may lead to fast convergence rate and geologically
consistent results (Virieux and Operto, 2009; Ayeni et al., 2009; |Guitton et al., [2012).
Multishooting and source encoding method is also a possible solution for accelerating
FWI (Schiemenz and Igel, 2013 Moghaddam et al., 2013). These techniques can be
combined with GPU implementation (Wang et al., 2011)). There are many reports
advocating their acceleration performance based on particular GPU hardware. These
reports may be out of date soon once the more powerful and advanced GPU product
are released. Although the speedup performance of our implementation may be a
little poor due to our hardware condition, we believe that it is useful to give readers
the implementation code to do performance analysis using their own GPU cards. The
current GPU-based FWI implementation parallelizes the forward modeling process
which makes it possible to run FWI on a single node and low-level GPU condition even
for a laptop. However, it is completely possible to obtain higher speedup performance
using the latest, high performance GPU products, and further parallelize the code on



TCCS-7 GPU implementation of FWI 33

multi-GPU architectures using message passing interface (MPI) programming.

ACKNOWLEDGMENTS

The work of the first author is supported by China Scholarship Council during his
visit to Bureau of Economic Geology, The University of Texas at Austin. This work
is sponsored by National Science Foundation of China (No. 41390454). Thanks
go to IFP for the Marmousi model. We wish to thank Sergey Fomel for valuable
help to incorporate the codes into Madagascar software package (Fomel et al., 2013))
(http://www.ahay.org), which makes all the numerical examples reproducible. The
paper is substantially improved according to the suggestions of Joe Dellinger, Robin
Weiss and two other reviewers.

APPENDIX A

MISFIT FUNCTION MINIMIZATION

Here, we mainly follow the delineations of FWI by [Pratt et al. (1998)) and |Virieux and
Opertol (2009).The minimum of the misfit function E(m) is sought in the vicinity of
the starting model my. The FWT is essentially a local optimization. In the framework
of the Born approximation, we assume that the updated model m of dimension M
can be written as the sum of the starting model mg plus a perturbation model Am:
m = mg + Am. In the following, we assume that m is real valued.

A second-order Taylor-Lagrange development of the misfit function in the vicinity
of my gives the expression

3 E mo

E(mp+Am) = Z; S, —— L Am;Am;+O0(||Am||?)
(A-1)

Taking the derivative with respect to the model parameter m; results in

OF(m) 0F(mg) = 0E(my) .
— —— ~ZAm;,i=1,2,..., M. A-2
8mi (9mz + Zl 8mjc9mz mj,l T ’ ( )
Equation (A-2) can be abbreviated as
E E E

OF(m) _ 0E(mo) OE(m) , )

Om  Om om?

Thus,

_ (PE(mg)\ ' 0E(mo) ..,


http://www.ahay.org

34 Yang et al. TCCS-7

where .
VEm = om [ omy = Omg T Omy (A-5)
nd PE(my)  (0°E(my)
. my) my )
VEy, and H are the gradient vector and the Hessian matrix, respectively.
B _ 9B(m) ofm)\" |

where Re takes the real part, and J = 9fm) s the Jacobian matrix, i.e., the sensitivity

om
or the Frchet derivative matrix.

In matrix form

o 0?E(m)

om?

T

=Re [J1J] +Re [SJ

m7

(Ap*, Ap*,..., Ap*)} : (A-8)

In the Gauss-Newton method, this second-order term is neglected for nonlinear inverse
problems. In the following, the remaining term in the Hessian, i.e., H, = Re[J'J],
is referred to as the approximate Hessian. It is the auto-correlation of the derivative
wavefield. Equation becomes

Am = -H 'VE, = —H,'Re[JTAp]. (A-9)
To guarantee the stability of the algorithm (avoiding the singularity), we may use

H = H, + nl, leading to
Am = -H 'VE,, = —(H, + nI) 'Re [JTAp] . (A-10)

Alternatively, the inverse of the Hessian in equation can be replaced by H =
H, ~ pl, leading to the gradient or steepest-descent method:

Am =~ 'VE, = —aVE, = —aRe [JTAp] . (A-11)
where o = L.

APPENDIX B

FRECHET DERIVATIVE

Recall that the basic acoustic wave equation reads

L p(x ;%)

(% ) — ,
’U2<X) Ot2 \ p(Xataxs) fs(X,t,XS).




TCCS-7 GPU implementation of FWI 35

The Green’s function G(x,t; X, ') is defined by

1 0*G(x,t;xq, 1)
v2(x) ot?

— V2G(x,t; X, ') = 6(x — x,)0(t — t'). (B-1)
Thus the integral representation of the solution can be given by (Tarantolal 1984))

pmmmz/w/mmmmWW@ﬁm
Vv

= / dx/dt'G(xr,t —t';x,0) f(x,t'; %) (Causility of Green’s function)
v

_ / AXG (%, %, 0) * f(x, 1 X,)
v (B-2)

where x denotes the convolution operator.

A perturbation v(x) — v(x) + Av(x) will produce a field p(x, t; x;) + Ap(x, t; X5)
defined by

1 PP tixd) + Apx, X o
) S ] S _ t' s A t. s — s t. s
(U(X)+AU(X))2 ot2 \ [p(X, 3 X )+ p(X7 3 X )] f(X, aX)
(B-3)
Note that
1 1 2Av(x)
= - O(A? B-4
W) T AP ) g O .
Equation subtracts equation , yielding
1 9*Ap(x,t;xq) 5 D?[p(x, ;%) + Ap(x, t;x,)] 2A0(x)
) Uy o A t: ) = ) 9 ) 9 B-5
v2(x) ot? VAP, £%,) ot? v3(x) (B-5)
Using the Born approximation, equation (96| becomes
1 0*Ap(x,t;x,) 9 9?p(x, t;x,) 2Av(x)
by Rs) A ¢ J) = )Y s B-
T e VIAp(x, 1 x,) o ) (B-6)
Again, based on integral representation, we obtain
0*p(x,t;x,) 2Av(x)
Ap(x,,t;xs) = /deG(x,,,t;x, 0) * 52 ) (B-7)



36 Yang et al. TCCS-7

APPENDIX C

GRADIENT COMPUTATION

In terms of equation (64)),

ng ns a " a » *
ZZ/dt [( P l) Pecal — pobs)*+ (8671;) (pcal_pobs)‘|

r=1 s=1

— ii/dm K&@) Ap} (AP = Peal — Pobs) (C-1)

r=1 s=1
.i.
= Re [(6f(m)) Ap
ami

o apcal
o [(a—m) o

According to the previous section, it follows that

i=1,2,..., M.

OPeat _ — 2 ‘ Pp(x,t;x,) 2
Toi(x) /VdXG(Xmt,X70)*p(X,t,X5)m = /vde(x,,,t,X7 0)x 5 )
(C-2)
The convolution guarantees
/dt[g(t) * f(E)]h(t) = /dtf(t)[g(—t) * h(t)]. (C-3)
Then, equation becomes
ng mns
a ca
ZZ/dtR |:( L l) Ap:| (Ap = Pcal _pobs>
r=1 s=1
ng ns t 2 *
max Fp(x,t;xs) 2 .
= ;;/ dtRe ( de (x,,1;%,0) * 52 v3(x)) Ap(xr,t,xs)}
= ii/tmx diRe Peat(X, 1 X;) 2 dXG (X, —t;%,0) * Ap(x,, t;X,))
£ atQ U3(X ) ) Ny IRg)
ng ns t 2
e 0 pcal X t;Xs 2
- ;;/0 dtRe ( 52 ) ) dXG (%, 0;x, 1) * Ap(X,.,t; xs))}
ng ns t 2
max 0" Pear (X, ;x5) 2
= dtR res\ &) s
22, ( g ) )

(C-4)

where p,.s(X, t; X;) is a time-reversal wavefield produced using the residual Ap(x,,¢; x;)
as the source. As follows from reciprocity theorem,

Dres(X, 1, X5) = / dxG(x,,0;%,t) * Ap(x,,t;Xs) = / dxG(x,0;x,,t) * Ap(x,, t;Xs).
v 1%
(C-5)



TCCS-7 GPU implementation of FWI 37

satisfying
1 82pres (X> tv Xs)
v2(x) ot?

It is noteworthy that an input f and the system impulse response function g are
exchangeable in convolution. That is to say, we can use the system impulse response
function g as the input, the input f as the impulse response function, leading to the
same output. In the seismic modeling and acquisition process, the same seismogram
can be obtained when we shoot at the receiver position x, when recording the seismic
data at position x.

- v2pres(xa t; Xs) = Ap(XT,, t; Xs)' (C_G)

REFERENCES

Ayeni, G., Y. Tang, B. Biondi, et al., 2009, Joint preconditioned least-squares in-
version of simultaneous source time-lapse seismic data sets: Presented at the 2009
SEG Annual Meeting.

Bai, J., D. Yingst, R. Bloor, and J. Leveille, 2014, Viscoacoustic waveform inversion
of velocity structures in the time domain: Geophysics, 79, R103—-R119.

Boonyasiriwat, C., G. Zhan, M. Hadwiger, M. Srinivasan, and G. Schuster, 2010,
Multisource reverse-time migration and full-waveform inversion on a GPGPU: Pre-
sented at the 72nd EAGE Conference & Exhibition.

Bunks, C., F. M. Saleck, S. Zaleski, and G. Chavent, 1995, Multiscale seismic wave-
form inversion: Geophysics, 60, 1457-1473.

Clayton, R., and B. Engquist, 1977, Absorbing boundary conditions for acoustic and
elastic wave equations: Bulletin of the Seismological Society of America, 67, 1529
1540.

Dussaud, E., W. W. Symes, P. Williamson, L. Lemaistre, P. Singer, B. Denel, and A.
Cherrett, 2008, Computational strategies for reverse-time migration: SEG Annual
meeting.

Engquist, B., and A. Majda, 1977, Absorbing boundary conditions for numerical
simulation of waves: Proceedings of the National Academy of Sciences, 74, 1765~
1766.

Fomel, S., P. Sava, I. Vlad, Y. Liu, and V. Bashkardin, 2013, Madagascar: open-source
software project for multidimensional data analysis and reproducible computational
experiments: Journal of Open Research Software, 1, 8.

Gauthier, O., J. Virieux, and A. Tarantola, 1986, Two-dimensional nonlinear inversion
of seismic waveforms: Numerical results: Geophysics, 51, 1387-1403.

Guitton, A., G. Ayeni, and E. Diaz, 2012, Constrained full-waveform inversion by
model reparameterization 1: Geophysics, 77, R117-R127.

Hager, W. W., and H. Zhang, 2006, A survey of nonlinear conjugate gradient methods:
Pacific journal of Optimization, 2, 35-58.

Harris, M., et al., 2007, Optimizing parallel reduction in cuda: NVIDIA Developer
Technology, 2, 45.

Liu, H., R. Ding, L. Liu, and H. Liu, 2013, Wavefield reconstruction methods for
reverse time migration: Journal of Geophysics and Engineering, 10, 015004.



38 Yang et al. TCCS-7

Micikevicius, P., 2009, 3D finite difference computation on GPUs using CUDA: Pro-
ceedings of 2nd Workshop on General Purpose Processing on Graphics Processing
Units, ACM, 79-84.

Moghaddam, P. P., H. Keers, F. J. Herrmann, and W. A. Mulder, 2013, A new
optimization approach for source-encoding full-waveform inversion: Geophysics,
78, R125-R132.

Pica, A., J. Diet, and A. Tarantola, 1990, Nonlinear inversion of seismic reflection
data in a laterally invariant medium: Geophysics, 55, 284-292.

Pratt, G., C. Shin, et al., 1998, Gauss—newton and full newton methods in frequency—
space seismic waveform inversion: Geophysical Journal International, 133, 341-
362.

Schiemenz, A., and H. Igel, 2013, Accelerated 3-D full-waveform inversion using simul-
taneously encoded sources in the time domain: application to valhall ocean-bottom
cable data: Geophysical Journal International, 195, 1970-1988.

Shin, C., and Y. H. Cha, 2008, Waveform inversion in the Laplace domain: Geophys-
ical Journal International, 173, 922-931.

—, 2009, Waveform inversion in the Laplace-Fourier domain: Geophysical Journal
International, 177, 1067-1079.

Shin, J., W. Ha, H. Jun, D.-J. Min, and C. Shin, 2014, 3D laplace-domain full wave-
form inversion using a single GPU card: Computers & Geosciences, 67, 1-13.

Symes, W. W., 2008, Migration velocity analysis and waveform inversion: Geophysical
Prospecting, 56, 765-790.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation:
Geophysics, 49, 1259-1266.

——, 1986, A strategy for nonlinear elastic inversion of seismic reflection data: Geo-
physics, 51, 1893-1903.

Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration
geophysics: Geophysics, 74, WCC1-WCC26.

Wang, B., J. Gao, H. Zhang, W. Zhao, et al., 2011, CUDA-based acceleration of full
waveform inversion on GPU: Presented at the 2011 SEG Annual Meeting, Society
of Exploration Geophysicists.

Yang, P., J. Gao, and B. Wang, 2014, RTM using effective boundary saving: A
staggered grid GPU implementation: Computers & Geosciences, 68, 64 — 72.



National Engineering Laboratory for Offshore Oil Ezxploration, XJTU, August 31, 2021

Seislet-based morphological component analysis
using scale-dependent exponential shrinkage

Pengliang Yang® and Sergey Fome

ABSTRACT

Morphological component analysis (MCA) is a powerful tool used in image pro-
cessing to separate different geometrical components (cartoons and textures,
curves and points etc). MCA is based on the observation that many complex
signals may not be sparsely represented using only one dictionary/transform,
however can have sparse representation by combining several over-complete dic-
tionaries/transforms. In this paper we propose seislet-based MCA for seismic
data processing. MCA algorithm is reformulated in the shaping-regularization
framework. Successful seislet-based MCA depends on reliable slope estimation of
seismic events, which is done by plane-wave destruction (PWD) filters. An ex-
ponential shrinkage operator unifies many existing thresholding operators and is
adopted in scale-dependent shaping regularization to promote sparsity. Numer-
ical examples demonstrate a superior performance of the proposed exponential
shrinkage operator and the potential of seislet-based MCA in application to trace
interpolation and multiple removal.

INTRODUCTION

A wide range of applications have been carried out by solving a series of linear inverse
problems and using the fact that numerous varieties of signals can be sparsely repre-
sented with an appropriate dictionary, namely a certain kind of transform bases. Un-
der the dictionary, the signals have fewer non-zeros of the representation coefficients.
However, many complex signals are usually linear superposition of several elementary
signals, and cannot be efficiently represented using only one dictionary. The concept
of morphological diversity was therefore proposed by |Starck et al.| (2004} 2005) to
combine several dictionaries for sparse representations of signals and images. Then,
the signal is considered as a superposition of several morphological components. One
has to choose a dictionary whose atoms match the shape of the geometrical structures
to sparsify, while leading to a non-sparse (or at least not as sparse) representation of
the other signal content. That is the essence of so-called morphological component
analysis (MCA) (Starck et al., 2004, [2007; Woiselle et al., [2011]).

Seislet transform and seislet frame are useful tools for seismic data compression
and sparse representation (Fomel and Liu, |2010). Seislets are constructed by apply-

*e-mail: ypl.2100@gmail.com, jhgao@mail.xjtu.edu

39



40 Yang & Fomel TCCS-8

ing the wavelet lifting scheme (Sweldens| [1998) along the spatial direction, taking
advantage of the prediction and update steps to characterize local structure of the
seismic events. In the seislet transform, the locally dominant event slopes are found
by plane-wave destruction (PWD), which is implemented using finite difference sten-
cils to characterize seismic images by a superposition of local plane waves (Claerbout),
1992). By increasing the accuracy and dip bandwidth of PWD, [Fomel| (2002) demon-
strated its competitive performance compared with prediction error filter (PEF) in
the applications to fault detection, data interpolation, and noise attenuation. PWD
keeps the number of adjustable parameters to a minimum, endows the estimated
quantity with a clear physical meaning of the local plane-wave slope, and gets rid of
the requirement of local windows in PEF. Recently, |Chen et al.| (2013alb) accelerated
the computation of PWD using an analytical estimator and improved its accuracy.

In this paper, we propose seislet-based MCA for seismic data processing. We refor-
mulate MCA algorithm in the shaping-regularization framework (Fomel, 2007, [2008).
Successful seislet-based MCA depends on reliable slope estimation of seismic events,
which can be done by plane-wave destruction (PWD) filtering. Due to the special
importance of an effective shrinkage or thresholding function in sparsity-promoting
shaping optimization, we propose a scale-dependent exponential shrinkage operator,
which can flexibly approximate many well-known existing thresholding functions.
Synthetic and field data examples demonstrate the potential of seislet-based MCA in
the application to trace interpolation and multiple removal.

MCA WITH SCALE-DEPENDENT SHAPING
REGULARIZATION

Analysis-based iterative thresholding

A general inverse problem combined with a priori constraint R(x) can be written as
an optimization problem

1
min 5 d, — P+ AR(z). )

where z is the model to be inverted, and d., is the observations. To solve the
problem with sparsity constraint R(z) = ||z||;, the iterative shrinkage-thresholding
(IST) algorithm has been proposed (Daubechies et al |2004)), which can be generally
formulated as

2kt = T)\(xk + F*(dops — F:vk)), (2)

where k£ denotes the iteration number; and F™* indicates the adjoint of F. T)(x) is an
element-wise shrinkage operator with threshold A:

TA(ZL‘) = (tA(Jfl),tA({EQ),...,tA(ZL‘m))T, (3)



TCCS-8 Seislet-based MCA 41

in which the soft thresholding function (Donohol 1995) is

u— A, lu] > A,

A
0. ESY @

[ul

= u. * max(1l —

ta(u) = Softy(u) = {

Allowing for the missing elements in the data, the observations are connected to
the complete data via the relation

dops = Md = M®x = Fa, F = M®. (5)

where M is an acquisition mask indicating the observed and missing values. Assume
® is a tight frame such that ®*® = 1d, x = &*dx = d*d. It leads to

dk+1 — (I)xk—i-l
= CI)T/\((I)*dk + (M(I))*(dobs - Mdk)) (6)
= (I)T)\((I)*dk + ®*<M*dobs - M*Mdk)>

= OT\(D*(d* + (dops — Md¥))),

in which we use M* = M = (M)? and Mds = M?d = Md. Now we define a residual
term as ¥ = dyps — Md", thus Eq. (6] results in

P dpy — M -
dM — DT\ (®*(d* + 1F)),

which is equivalent to solving
1
min ol dos, — M| + AR(®"d). (8)

Note that Eq. analyzes the target unknown d directly, without resort to = and
d = ®z. Eq. (6] is referred to as the analysis formula (Elad et al| 2007). In this
paper, we used the analysis formula because it directly addresses the problem in the
data domain for the convenience of interpolation and signal separation.

Understanding iterative thresholding as shaping regulariza-
tion

Note that at each iteration soft thresholding is the only nonlinear operation corre-
sponding to the ¢; constraint for the model z, i.e., R(z) = ||z|/;. Shaping regular-
ization (Fomel, 2007, 2008) provides a general and flexible framework for inversion
without the need for a specific penalty function R(x) when a particular kind of shap-
ing operator is used. The iterative shaping process can be expressed as

" = S(2% + B(dys — Fa)), (9)

where the shaping operator S can be a smoothing operator (Fomel, 2007), or a more
general operator even a nonlinear sparsity-promoting shrinkage /thresholding opera-
tor (Fomel, [2008). It can be thought of a type of Landweber iteration followed by



42 Yang & Fomel TCCS-8

projection, which is conducted via the shaping operator S. Instead of finding the for-
mula of gradient with a known regularization penalty, we have to focus on the design
of shaping operator in shaping regularization. In gradient-based Landweber iteration
the backward operator B is required to be the adjoint of the forward mapping F, i.e.,
B = F*; in shaping regularization however, it is not necessarily required. Shaping
regularization gives us more freedom to choose a form of B to approximate the inverse
of F' so that shaping regularization enjoys faster convergence rate in practice. In the
language of shaping regularization, the updating rule in Eq. becomes

Tk — dobs - Mdka
d" — S (P*(d¥ + b)),

where the backward operator is chosen to be the inverse of the forward mapping.

(10)

MCA using sparsity-promoting shaping

MCA considers the complete data d to be the superposition of several morphologically
distinct components: d = Zfil d;. For each component d;, MCA assumes there
exists a transform ®; which can sparsely represent component d; by its coefficients «;
(cy; = ®fd; should be sparse), and can not do so for the others. Mathematically,

N

N
o j =M ;- 11
r{r{nn R( d;),subject to dops Z d; (11)

The above problem can be rewritten as
rnln

{d} obs MZd

We prefer to rewrite Eq. . as

il e) o]
FAR(®d;) + A R(P; (13)

JF
Thus, optimizing with respect to d; leads to the analysis IST shaping as Eq. @
At the kth iteration, optimization is performed alternatively for many components
using the block coordinate relaxation (BCR) technique (Bruce et al.,[1998): for the z'th
component d¥, i =1,..., N: ® « &, d¥ « dF, d" « &7 dops  dops— sz# .

yields the residual term rk =dpps — M Zz 1 d;  and the updating rule

r Hdobs—Mvaldf (14)
dit o ©;9(Dr(dF + rF)).

+ Z R(®7d;). (12)

2

The final output of the above algorithm are the morphological components dz, =
1,...,N. The complete data can then be reconstructed via d = ZZ 1 d;. This is the
main pr1nc1ple of the so-called MCA-based inpainting algorithm (Elad et al., 2005)).



TCCS-8 Seislet-based MCA 43

SEISLET-BASED MCA SPARSIFIED WITH
SCALE-DEPENDENT EXPONENTIAL SHRINKAGE

Seislet transform and local slope estimation

Seislet transform and seislet frame were proposed by Fomel and Liu (2010)) for seismic
data compression and sparse representation. Seislets are constructed by applying the
wavelet lifting scheme (Sweldens, [1998) along the local slope direction. For each level
of lifting decomposition, seismic data is split into even and odd parts (e and o). Then
the prediction and update step follows to obtain the detail difference/residual d and
smooth information s:

d=e— Plo],s=e+ Uld]. (15)

Recognizing that seismic data can be organized as collections of traces or records,
Fomel and Liu (2010]) suggest prediction of one seismic trace or record from its neigh-
bors and update of records on the next scale to follow structural features in seismic
data. In the Z-transform notation, the simplest Haar prediction filter can be written
as

P(Z)=2Z, (16)
and the linear interpolation prediction filter is
P(Z)=(Z+1/2))2. (17)

Successful prediction and update play a key role for local slope estimation. By
modifying the biorthogonal wavelet construction, the prediction and update operators
for a simple seislet transform are defined as

Ple]r = (5S¢ [ex—1] + Sy [ex]) /2,

Ulrli = (S [rer] + Sy [re]) /4, (18)

where S;” and S, are the operators that predict a trace from its left and right neigh-
bors, corresponding to shifting seismic events in terms of their local slopes. The job
of local slope estimation can be done by PWD filters. Particularly, it is possible to
obtain two or more dips with the help of PWD filters to capture different geomet-
rical components of seismic data. The estimation of slopes involves a least-square
optimization problem to be solved (Fomel, 2002)), leading to extra computation. It
is important to point out that besides PWD, there are other approaches to estimat-
ing dips of seismic data, i.e., local slant stack (Ottolini, |1983) and volumetric scan
(Marfurt|, 2006]). However, PWD implements slope estimation through prediction and
therefore is appropriate for use with the seislet transform.

Sparsifying MCA with exponential shrinkage shaping

The IST algorithm used by MCA requires soft thresholding function to filter out
the unwanted small values. Besides soft thresholding (Donoho| 1995), many other



44 Yang & Fomel TCCS-8

shrinkage functions can also be applied to obtain possibly better sparseness. One
particular choice is hard thresholding:

ty(u) = Hardy(u) = u. * (Ju| > A71:0). (19)

where (-)7A : B frequency used hereafter is an if-else judgment in C-code style: The
expression equals A if the statement (-) is true, and B otherwise.

Another choice is Stein thresholding (Peyre, 2010; [Mallat, [2009):

tr(u) = Steiny(u) = u. * max (1 — (%)2, 0) . (20)

Stein thresholding does not suffer from the bias of soft thresholding, that is,
|Steiny (u) — u| — 0, |Softy(u) — u| — A,if u — oo. (21)

Recent advances in nonconvex optimization (Chartrand, 2012; Voronin and Char-
trand, 2013 |(Chartrand and Wohlberg, [2013)) show that the shrinkage operator in
IST algorithm (Eq. (2))) can be generalized to a p-quasinorm (0 < p < 1) threshold-
ing operator T}, in which

A
tx(u) = pThresh, ,(u) = u. x max (1 - (H)z’p, 0) : (22)
’ u
A special case is that of p = 1, which corresponds to the soft thresholding operator
exactly.

Most of these shrinkage functions interpolate between the hard and soft thresh-
olders. It is tempting for us to design a more general shrinkage function to sparsify
the transform domain coefficients in shaping regularized MCA. One possibility is
multiplying an exponential factor on the elements of original data:

ta(u) = u. * exp(—(—)*7P). (23)
Based on Taylor series, this operator in Eq. (23)) enjoys some useful properties:

e [t is valuable to point out that the exponential shrinkage can be considered as
a smooth ¢y constraint (Mohimani et al., 2009; (Gholami and Hosseini, 2011)).
For |u| >> A, it is a good approximation of the p-thresholding operator in Eq.
, and does not suffer the bias when p # 1. It reduces to Stein thresholding
operator for p = 0 and soft thresholding for p = 1.

A

tro(u) = u. * exp(—(m)Q) ~ou.ok (1 — (%)2),
(24)
tai(u) = u. * exp(—(%)) ~u.ox (1 — (%))



TCCS-8 Seislet-based MCA 45

e It is free of non-differentiable singularity at the thresholding point A\. The
transition between the small values and the large values is smoothly stretched.
Due to the exponential factor less than 1 (exp(—()?>™?) < 1), this operator

|ul

will slightly decrease the data amplitude, even for |u| < A.

e Besides the threshold A\, we have another independent parameter p which can
be flexibly chosen to achieve better performance.

In the language of shaping regularization, shrinkage-based shaping operator S is
equivalent to multiplying the coefficient vector = by a diagonal weighting matrix W
to in the sense that

S(z) =W, (25)
where )
1—ﬁ>0?1:0, Hard
max (1 — ﬁ, 0), Soft
2
diag(W;) = max(1 — (ﬁ) ,0), Stein (26)
29—
max(1 — (ﬁ) p,O), pThresh
\exp(—(ﬁ)%l’), Exponential

For the convenience of comparison, we plot these thresholding operators in Figure [I}

Note that we are using seislet transform which has different scales for signal rep-
resentation. Usually, large scales of seislet coefficients corresponds to unpredictable
noise, while most of the important information gets transformed into smaller scales.
We design a scale-dependent diagonal weighting operator:

diag(W;) = s(x;) < 5071 : 0, (27)

where s is user-defined scale, while s(x;) is the scale that the coefficient x; correspond
to. Putting all things together, in the MCA shaping regularization we are using a
scale-dependent exponential shrinkage operator which is a composite operator cas-
caded with a scale-muting operator Wy and an exponential weighting operator We,,:

S(x) = Wegp Wiz (28)

The use of scale-dependent exponential shrinkage offers easy control on the separation
of the signal components we would like to capture. It is interesting to mention that
under the Fourier basis, the scale-muting operator W becomes a frequency mask (it
behaves like a selective hard thresholding), which can be employed to remove the
groundroll in application to seismic interpolation (Gholami, 2014)).

By incorporating PWD dip estimation and scale-dependent exponential shrink-
age shaping, we summarize the proposed seislet-based MCA algorithm as Algorithm
MCA. Seislet transforms associated with different dips form a combined seislet frame
(Fomel and Liu, 2010). The threshold in each iteration can be determined with a



46 Yang & Fomel TCCS-8

predefined percentile according to Hoare’s algorithm. Shrinkage operator plays the
role of crosstalk removal in MCA algorithm, as explained in more detail in Appendix

A.

Thresholding operators

5
4+
Vs
3r 7
Y
7
2 L 7,
1 7
7
or = =
e
1 77
-2 7
7 7 Hard
-3r 77 Soft
— pThresh,p=0.5
-4y Stein
— — —exponential,p=0.5
_5 i
-5 0 5

Figure 1: A schematic plot of the shrinkage operators,A = 1

Algorithm 1 Seislet-based MCA algorithm
Input: Observed seismic image d,s; sampling mask M; iteration number niter;
shrinkage shaping parameter p, seislet transform ®; associated with the ith esti-
mated slope.
Output: Separated seismic component d;.
1: Initialize: dl(-k) —0,2=1...N;
2: for k =1...niter do
r® — dyye — MY a,
fori:=1...N do
A (4 0,
Estimate shaping parameters A and sg;

d® — ,5(zF);

end for

end for

@

NUMERICAL EXAMPLES
Trace interpolation

Interpolation of random missing traces is an important task in seismic data processing.
Unlike most studies using only one transform, we consider the seismic data having



TCCS-8 Seislet-based MCA 47

two different components, which can be characterized by a seislet frame composed
of seislet transforms associated with two different slopes. PWD filter is utilized to
estimate the two dip fields . As shown in Figure |2, the complete data
is decimated with a random eliminating rate 25%. 10 iterations are carried out to
separate these components. The estimated dips (Figure [3) by PWD indicate that
the two separated components exhibit different modes: component 2 has positive and
negative dips, corresponding to seismic diffractions, while the events of component
1 are more consistent (most values of the dip are positive). The summation of the
two components gives a reasonable interpolation result (right panel of Figure[4]) For
comparison, we define the signal-to-noise ratio as SNR = 10loglo(%) to quantify
the reconstruction performance. The resulting SNRs using exponential shrinkage,
soft, hard, and generalized p-thresholding are 11.98 dB, 11.29 dB, 5.37 dB and 8.94
dB, respectively. It shows that the proposed exponential shrinkage outperforms the
existing methods in MCA interpolation. It is important to point out that approxi-
mating the ¢y and ¢; minimization in a smooth constraint has already been validated
in seismic interpolation applications by |Cao et al. (2011). The use of exponential
shrinkage enriches the sparsity-promoting shaping operator and extends the smooth

constraint to MCA approach.

Trace Trace

0 50 100 150 0 50 100 150

Original Missing

Figure 2: The observed seismic data (right) to be interpolated is obtained by 25%

random eliminating the complete data (left). | mcaseislet/interp/ data




from rsf.proj import *

Fetch('sean.HH','bp')

Flow('sean','sean.HH',
     'dd form=native | window n3=1 f3=3 n1=500 | bandpass fhi=50')
Plot('sean','window n2=180 | grey title=Original label1="Time (s)" label2=Trace font=2 labelsz=12  titlesz=12  labelfat=4 titlefat=4')

     
# Pad to a power of 2
Flow('sean1','sean','pad n2=256')

# Randomly remove 25% of traces
Flow('mask','sean',
     '''
     window n1=1 | noise type=n seed=2014 rep=y mean=0.5 |
     mask max=0.75 | pad n1=256 |
     spray axis=1 n=500 | dd type=float
     ''')
Flow('sean2','sean1 mask','mul ${SOURCES[1]}')
Plot('sean2','window n2=180 | grey label1="Time (s)" label2=Trace title=Missing font=2 labelsz=12  titlesz=12  labelfat=4 titlefat=4')
Result('data','sean sean2','SideBySideAniso')

#================================================================================
Flow('ppq','sean2 mask','twodip2 mask=${SOURCES[1]} order=2 eps=5 verb=y gauss=n niter=10 | pad n2=256 labelfat=6 titlefat=6')
Flow('dip1','ppq','window n3=1')
Flow('dip2','ppq','window f3=1')
Plot('dip1','window n2=180 |grey title="First Dip" label1="Time (s)" label2=Trace pclip=100 scalebar=y color=j font=2 labelsz=12 titlesz=12  labelfat=4 titlefat=4')
Plot('dip2','window n2=180 |grey title="Second Dip"  label1="Time (s)" label2=Trace pclip=100 scalebar=y color=j font=2 labelsz=12 titlesz=12  labelfat=4 titlefat=4')
Result('dips','dip1 dip2','SideBySideAniso')

# Seislet-based MCA inpainting (exponential shrinkage):
Flow('rec0','sean2 ppq mask',
     '''
     mcaseislet dips=${SOURCES[1]} mask=${SOURCES[2]} mode=exp p=1.3
     verb=y order=2 type=b eps=0.01 niter=10 pclip=3 pscale=30 
     ''')
Flow('rec1','rec0','window n2=180 n3=1 ')
Flow('rec2','rec0','window n2=180 f3=1')
Flow('rec','rec1 rec2','add scale=1,1 ${SOURCES[1]}')
Flow('snr1','rec sean','mysnr ref=${SOURCES[1]}')

Plot('rec1','grey title="Component 1" label1="Time (s)" label2=Trace font=2 labelsz=12  titlesz=12 labelfat=4 titlefat=4')
Plot('rec2','grey title="Component 2" label1="Time (s)" label2=Trace font=2 labelsz=12  titlesz=12 labelfat=4 titlefat=4')
Plot('rec','grey title=Interpolated label1="Time (s)" label2=Trace font=2 labelsz=12  titlesz=12 labelfat=4 titlefat=4')
Result('interp', 'rec1 rec2 rec','SideBySideAniso')


# Seislet-based MCA inpainting (soft thresholding):
Flow('recc0','sean2 ppq mask',
     '''
     mcaseislet dips=${SOURCES[1]} mask=${SOURCES[2]} mode=soft
     verb=y order=2 type=b eps=0.01 niter=10 pclip=3 pscale=30 
     ''')
Flow('recc1','recc0','window n2=180 n3=1 ')
Flow('recc2','recc0','window n2=180 f3=1')
Flow('recc','recc1 recc2','add scale=1,1 ${SOURCES[1]}')
Flow('snr2','recc sean','mysnr ref=${SOURCES[1]}')


# Seislet-based MCA inpainting (hard thresholding):
Flow('reccc0','sean2 ppq mask',
     '''
     mcaseislet dips=${SOURCES[1]} mask=${SOURCES[2]} mode=hard
     verb=y order=2 type=b eps=0.01 niter=10 pclip=3 pscale=30
     ''')
Flow('reccc1','reccc0','window n2=180 n3=1 ')
Flow('reccc2','reccc0','window n2=180 f3=1')
Flow('reccc','reccc1 reccc2','add scale=1,1 ${SOURCES[1]}')
Flow('snr3','reccc sean','mysnr ref=${SOURCES[1]}')


# Seislet-based MCA inpainting (Generalized quasi-p thresholding):
Flow('recccc0','sean2 ppq mask',
     '''
     mcaseislet dips=${SOURCES[1]} mask=${SOURCES[2]} mode=pthresh p=1.3
     verb=y order=2 type=b eps=0.01 niter=10 pclip=3 pscale=30 
     ''')
Flow('recccc1','recccc0','window n2=180 n3=1 ')
Flow('recccc2','reccc0','window n2=180 f3=1')
Flow('recccc','recccc1 recccc2','add scale=1,1 ${SOURCES[1]}')
Flow('snr4','recccc sean','mysnr ref=${SOURCES[1]}')


End()




48 Yang € Fomel TCCS-8

Trace Trace

0 50 100 150 0 50 100 150

Time (s)

First Dip Second Dip

Figure 3: PWD estimated dips: dip estimation for component 1 (Left) are
positive-valued, while dip for component 2 includes negative and positive values.
’ mcaseislet /interp/ dips ‘

Multiple removal

Our second example is the separation of primaries and multiples for the field CMP
gather shown in Figure 5 (Fomel and Guitton, |2006). In the case of signal separation,
the mask operator M becomes an identity. The multiples are predicted using surface-
related multiple elimination (SRME). Even though SRME fails to predict the correct
amplitudes, however, the resulting prediction helps PWD to extract the dominant
slopes of multiple events. Before applying the seislet-based MCA method, it is im-
portant to point out that the iteratively reweighted least-squares (IRLS) method using
the model precondition is another way for sparsity-enforced separation (Daubechies
et al, [2010). Thus, we compared multiple removal by two different methods: seislet-
based IRLS method and the proposed seislet-based MCA method. For comparison,
the separated primaries and multiples using different methods are plotted in Figures 6]
and [7] Visually, the seislet-based IRLS method and the seislet-based MCA method
output similar primaries, which can also be seen clearly from the velocity scans of the
primaries shown in Figure[§] To further confirm our conclusion, we draw the velocity
scans of predicted multiples in Figure[0] The panels of velocity scan in Figures[§land
9 demonstrate that using MCA, the primaries correctly correspond to high velocity
part while the multiples are associated with low velocity part. Figure [J] shows that
seislet-based MCA outperforms the seislet-based IRLS method in the locations A and
B in the velocity scan panel due to the nice match of the corresponding semblance




TCCS-8

Time (s)

Component 1

Seislet-based MCA

Trace

Time (s)

Component 2

Time (s)

50

Trace

100

Interpolated

150

49

Figure 4: From left to right: MCA reconstructed component 1, component 2 and the

final interpolated data.

mcaseislet /interp/ interp




50 Yang € Fomel TCCS-8

scan of the original data; at locations C and D, the energy of multiples obtained by
seislet-MCA has less leakage, compared to the seislet-IRLS method. Note that the
seislet-based MCA algorithm only uses 15 iterations to obtain the best separation
effect, while the number of iterations for seislet-IRLS method is 1000. Therefore,
seislet-based MCA is very efficient to demultiple.

Offset (km) Offset (km)
05 1 15 2 25 3 05 1t 15 2 25 3
~
)
F+
o
1)
o
~
S
+
o
1

-1000

Data SRME-predicted Multiples

Figure 5: The field CMP data (left) and SRME predicted multiples (right). The
amplitudes of SRME prediction needs to be corrected. |mcaseislet/sep2/ srme

CONCLUSION AND DISCUSSION

We have developed a seislet-based MCA method for seismic data processing. PWD
filter can be utilized to estimate the slopes of seismic data. An exponential shrink-
age function is introduced to diversify the capability of sparsity-promoting shaping
operator. The proposed seislet-based MCA using scaled-dependent shaping regular-
ization is promising in the application to seismic trace interpolation, and multiple
removal. The numerical results reveal that the exponential shrinkage operator in
sparsity-promoting shaping regularization plays an extremely important role in suc-
cessful seislet-based MCA separation, superior to many existing thresholding opera-
tors. The additional parameter p provides us more flexibility for approximating many
existing shrinkage operators to achieve better separation performance. Meanwhile, it
is free of non-differential singularity and unifies many existing shrinkage operators.

Seislet-MCA using PWD-based dip estimation is of special physical meaning for
geophysical data in seismic processing, while the sparse dictionaries reported in[Starck|
are useful in image processing but lacking seismic attributes. However,
a computational expensive optimization problem using least-squares minimization,
which is not involved in the method of |Starck et al.|(2004), has to be solved to estimate




from rsf.proj import *
from rsf.recipes.beg import server as private

Fetch('cmp.HH','acig',private)
Flow('cmp','cmp.HH','dd form=native | tpow tpow=2 | mutter v0=1.4 half=n')

def grey(title,other=''):
    return '''
    grey title="%s" font=2 labelsz=12 titlesz=12 labelfat=4 titlefat=4
    scalebar=y  label1="Time (s)" label2="Offset (km)" %s
    ''' % (title,other)

Plot('cmp',grey('Data','clip=228'))

# Interpolate near offsets
Flow('cmp0','cmp','window max2=1 | pad beg2=5')
Flow('cmp1','cmp0','reverse which=2 opt=n | cat axis=2 $SOURCE')
Flow('mask0','cmp','math output=1 | window max2=1 | pad beg2=5')
Flow('mask1','mask0','reverse which=2 opt=n | cat axis=2 $SOURCE')
Flow('dip1','cmp1','math output="x2*%g/(x1+0.001)" ' % (0.05/(0.004*1.5*1.5)))
Flow('dip2','cmp1 dip1 mask1',
     'twodip2 eps=100 lam=10 dip1=${SOURCES[1]} mask=${SOURCES[2]} q0=0')
Flow('mis','cmp1 dip2 mask1',
     '''
     planemis2 dip=${SOURCES[1]} mask=${SOURCES[2]} verb=y prec=0 niter=10000
     ''')
Flow('mis2','mis cmp','window min2=0 n2=6 | cat axis=2 ${SOURCES[1]}')
Flow('mis3','mis2','window f2=1 | reverse which=2 opt=n | cat axis=2 $SOURCE')

#Plot('mis2','grey title="Near Offsets Interpolated" ')

# Predict multiples
###################
Flow('ccmp','mis2','pad n1=2048 | fft1 | fft3')
Flow('mult','ccmp','add mode=p $SOURCE | fft3 inv=y | fft1 inv=y | window n1=1000')
Plot('mult','window f2=6 | ' + grey('SRME-predicted Multiples'))

# Mask the important part
#########################
Flow('mask','mult','math output=1 | mutter hyper=y t0=0.7 v0=2 half=n | smooth rect1=5 rect2=5')
Flow('cmp2','mask mis2','add mode=p ${SOURCES[1]}')
Flow('mult2','mask mult','add mode=p ${SOURCES[1]}')

# Estimate dips
###############
Flow('mdip','mult2','dip rect1=20 rect2=10 liter=40 pmin=0')
Flow('vdip','cmp2',
     'math output="%g*x2/(x1+0.004)" ' % (0.05/(2.5*2.5*0.004)))
Flow('mask2','mdip','mask max=5 | dd type=float | smooth rect1=5 rect2=5')

Flow('mdip2','cmp2 mdip mask2 vdip',
     '''
     twodip2 eps=30  dip2=${SOURCES[1]} dip1=${SOURCES[3]} mask=${SOURCES[2]} verb=y 
     ''')

Result('srme','cmp mult','SideBySideAniso')


Flow('vcmp','cmp','vscan semblance=y v0=1 nv=100 dv=0.02 half=n')
Plot('vcmp',grey(' Data','color=j allpos=y scalebar=y maxval=0.75'))


#============== Separate signal/noise [method 2: seisigk] ======================
Flow('cmp2s','cmp2','window n2=64')
Flow('mdip2s','mdip2','window n2=64')
Flow('masks','mask','window n2=64')
Flow('comps','cmp2s mdip2s','seisigk dips=${SOURCES[1]} verb=y niter=1000')

Flow('noissIRLS','comps masks','window f3=1 | add mode=p ${SOURCES[1]}')
Flow('signsIRLS','mis2 noissIRLS','window n2=64 | add scale=1,-1 ${SOURCES[1]}')
Flow('vsignsIRLS','signsIRLS','vscan semblance=y v0=1 nv=100 dv=0.02 half=n')
Flow('vnoissIRLS','noissIRLS','vscan semblance=y v0=1 nv=100 dv=0.02 half=n')

Plot('noissIRLS','window f2=6 | ' + grey('Seislet-IRLS (noise)','clip=228'))
Plot('signsIRLS','window f2=6 | ' + grey('Seislet-IRLS (signal)','clip=228'))
Plot('vsignsIRLS',grey('Seislet-IRLS (signal)','color=j allpos=y maxval=0.75'))
Plot('vnoissIRLS',grey('Seislet-IRLS (noise)','color=j allpos=y maxval=0.75'))

#============== Separate signal/noise [method 2: mcaseislet] ======================
# obtain similar separation effect with only 10-20 iterations, more efficient!
Flow('compsmca','cmp2s mdip2s','mcaseislet dips=${SOURCES[1]} verb=y order=1 type=l eps=0.01 niter=15 pclip=10 pscale=13')

Flow('noissmca','compsmca masks','window f3=1 | add mode=p ${SOURCES[1]}')
Flow('signsmca','mis2 noissmca','window n2=64 | add scale=1,-1 ${SOURCES[1]}')
Flow('vsignsmca','signsmca','vscan semblance=y v0=1 nv=100 dv=0.02 half=n')
Flow('vnoissmca','noissmca','vscan semblance=y v0=1 nv=100 dv=0.02 half=n')

Plot('noissmca','window f2=6 | ' + grey('Seislet-MCA (noise)','clip=228'))
Plot('signsmca','window f2=6 | ' + grey('Seislet-MCA (signal)','clip=228'))
Plot('vsignsmca',grey('Seislet-MCA (signal)','color=j allpos=y maxval=0.75'))
Plot('vnoissmca',grey('Seislet-MCA (noise)','color=j allpos=y maxval=0.75'))

Plot('markA',None,'box font=2 x0=4.5 y0=1.5 label="A" xt=-0.5 yt=0.5 size=0.5')
Plot('markB',None,'box font=2 x0=7.5 y0=1.9 label="B" xt=0.5 yt=0.5 size=0.5')
Plot('markC',None,'box font=2 x0=8.2 y0=4.2 label="C" xt=0.5 yt=0.5 size=0.5')
Plot('markD',None,'box font=2 x0=7.5 y0=5 label="D" xt=0.5 yt=0.5 size=0.5')

Plot('vnoissA','vnoissIRLS markA markB markC markD','Overlay')
Plot('vnoissmcaA','vnoissmca markA markB markC markD','Overlay')
Plot('vcmpA','vcmp markA markB markC markD','Overlay')

Result('signal','signsIRLS signsmca','SideBySideAniso')
Result('nois','noissIRLS noissmca','SideBySideAniso')

Result('vsignal','vsignsIRLS vsignsmca vcmp','SideBySideAniso')
Result('vnois','vnoissA vnoissmcaA vcmpA','SideBySideAniso')


End()



TCCS-8 Seislet-based MCA 51

Offset (km) Offset (km)

o
)
0
o
)
0
)
o
3
S ?
n
|
Seislet—IRLS (signal) Seislet—MCA (signal)

Figure 6: Separated primaries using seislet-IRLS (1000 iterations) and seislet-based
MCA (15 iterations). | mcaseislet/sep2/ signal

Offset (km) Offset (km)

o
o
Q
—_ 1)

S] N

o~

E

=
o
)
Q
o |
o
o
S === ¥

Seislet=IRLS (noise) Seislet—=MCA (noise)

Figure 7: Separated multiples using seislet-IRLS (1000 iterations) and seislet-based
MCA (15 iterations). |mcaseislet /sep2/ nois|




52 Yang & Fomel TCCS-8

Offset (km) Offset (km) Offset (km)

0.4
0.4

Time (s)

o
Seislet—IRLS (signal) Seislet—MCA (signal) Data

Figure 8: Velocity scan for primaries obtained by seislet-IRLS and seislet-based MCA
(first two panels, from left to right). The velocity scan of original data is shown in
the last panel for comparison. ’mcaseislet /sep2/ Vsignal‘




TCCS-8 Seislet-based MCA 53

Offset (km) Offset (km) Offset (km)

1 1.5 2 2.5 1 1.5 2 2.5 1 1.5 2 2.5

w0 w ©w
o <) o
< i <
o o o
N D N
o o o

o

Seislet—IRLS (noise) Seislet—MCA (noise) Data

Figure 9: Velocity scan for multiples obtained by seislet-IRLS and seislet-based MCA
(first two panels, from left to right). The velocity scan of original data is shown in
the last panel for comparison. Seislet-based MCA outperforms seislet-based IRLS
method in the locations A and B in the velocity scan panel due to the nice match
of the corresponding semblance scan of the original data; at locations C and D, the
energy of multiples obtained by seislet-MCA has less leakage, compared to seislet-
IRLS method. ’mcaseislet/sepQ/ Vnois‘




54 Yang & Fomel TCCS-8

the slope fields before applying our seislet-based method. Besides the computational
expensive slope estimation, the proposed method is very efficient for interpolation
and separation. The method fails to interpolate the missing traces when the random
decimating rate is larger than 70% for 2D seismic data, which honors the necessity
of high dimensional data reconstruction using 3D seislet transform. Although nu-
merically working well, up to now we have no theoretical convergence proof of the
nonlinear shaping algorithm, and it remains an open problem for future works.

ACKNOWLEDGMENTS

The work of the first author was supported by the China Scholarship Council (No.
201306280082) during his visit to the Bureau of Economic Geology and the University
of Texas at Austin. We would like to thank Wenchao Chen and Jianwei Ma for valu-
able suggestions. Reproducible examples are created using the Madagascar software
package (Fomel et al., 2013).

CONNECTIONS BETWEEN SEISLET FRAME AND
SEISLET-MCA ALGORITHM

The complete data d is regarded to be superposition of several different geometrical
components, and each component can be sparely represented using a seislet dictionary

(bia i.e.,
N N
i=1 i=1
“ (A-1)
&)
= [(I)lyq)%' o J(I)N]
an
where F' = [®y, Py, -+, Py] is a combined seislet dictionary (i.e. seislet frame), and
the backward operator is chosen to be
o7
1| 9
B =— A-2
<1 (A-2)
Py
in the sense that
N
= > @0 =1d. (A-3)
i=1

The difference between seislet-MCA algorithm and seislet frame minimization is the
use of BCR technique (Bruce et al. |1998): We sparsify one component while keeping



TCCS-8 Seislet-based MCA 55

all others fixed. At the k + 1-th iteration applying the backward operator on the i-th
component leads to

N
df“ = Ozf + Z (IDZ‘r’“ = ozf + rf + Z (I)frf (A-4)
i=1 j#i

where the terms > ki CD;“T;-“ are the crosstalk between the i-th component and the oth-
ers. An intuitive approach to filter out the undesired crosstalk is shrinkage/thresh-
olding. The proposed exponential shrinkage provides us a flexible control on the
performance of the shrinkage/thresholding operator.

REFERENCES

Bruce, A., S. Sardy, and P. Tseng, 1998, Block coordinate relaxation methods for
nonparamatric signal denoising: Proceedings of SPIE, 3391, 75-86.

Cao, J., Y. Wang, J. Zhao, and C. Yang, 2011, A review on restoration of seismic
wavefields based on regularization and compressive sensing: Inverse Problems in
Science and Engineering, 19, 679-704.

Chartrand, R., 2012, Nonconvex splitting for regularized low-rank + sparse decom-
position: IEEE Transactions on Signal Processing, 60, 5810-5819.

Chartrand, R., and B. Wohlberg, 2013, A nonconvex admm algorithm for group
sparsity with sparse groups: Presented at the Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP).

Chen, Z., S. Fomel, and W. Lu, 2013a, Accelerated plane-wave destruction: Geo-
physics, 78, V1-V9.

——, 2013b, Omnidirectional plane-wave destruction: Geophysics, 78, V171-V179.

Claerbout, J. F.; 1992, Earth soundings analysis: Processing versus inversion: Black-
well Scientific Publications Cambridge, Massachusetts, USA, 6.

Daubechies, 1., M. Defrise, and C. De Mol, 2004, An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint: Commun. Pure Appl. Math.,
57, 1413-1457.

Daubechies, 1., R. DeVore, M. Fornasier, and S. Gunturk, 2010, Iteratively reweighted
least squares minimization for sparse recovery: Commun. Pure Appl. Math., 63.
Donoho, D., 1995, De-noising by soft-thresholding: IEEE Transactions on Information

Theory, 41, 613-627.

Elad, M., P. Milanfar, and R. Rubinstein, 2007, Analysis versus synthesis in signal
priors: Inverse Probl., 23, 947-968.

Elad, M., J. Starck, P. Querre, and D. L. Donoho, 2005, Simultaneous cartoon and
texture image inpainting using morphological component analysis (MCA): Applied
and Computational Harmonic Analysis, 19, 340 — 358.

Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics, 67, 1946—
1960.

——, 2007, Shaping regularization in geophysical-estimation problems: Geophysics,
72, R29-R36.



56 Yang & Fomel TCCS-8

——, 2008, Nonlinear shaping regularization in geophysical inverse problems: SEG
Annual Meeting, 2046-2051.

Fomel, S., and A. Guitton, 2006, Regularizing seismic inverse problems by model
reparameterization using plane-wave construction: Geophysics, 71, A43-A47.

Fomel, S., and Y. Liu, 2010, Seislet transform and seislet frame: Geophysics, 75,
V25-V38.

Fomel, S., P. Sava, I. Vlad, Y. Liu, and V. Bashkardin, 2013, Madagascar: open-source
software project for multidimensional data analysis and reproducible computational
experiments: Journal of Open Research Software, 1, e8.

Gholami, A., 2014, Non-convex compressed sensing with frequency mask for seismic
data reconstruction and denoising: Geophysical Prospecting, 62, 1389-1405.

Gholami, A., and S. Hosseini, 2011, A general framework for sparsity-based denoising
and inversion: IEEE Transactions on Signal Processing, 59, 5202-5211.

Mallat, S., 2009, A wavelet tour of signal processing, 3rd ed.: Academic Press.

Marfurt, K. J., 2006, Robust estimates of 3D reflector dip and azimuth: Geophysics,
71, P29-P40.

Mohimani, G. H., M. Babaie-Zadeh, and C. Jutten, 2009, A fast approach for over-
complete sparse decomposition based on smoothed 1-0 norm: IEEE Transactions
on Signal Processing, 57, 289-301.

Ottolini, R., 1983, Signal /noise separation in dip space: Stanford Exploration Project:
SEP report, 3, 143-149.

Peyre, G., 2010, Advanced image, signal and surface processing.

Starck, J., M. Elad, and D. Donoho, 2004, Redundant multiscale transforms and
their application for morphological component separation: Advances in Imaging
and Electron Physics, 132, 287-348.

——, 2005, Image decomposition via the combination of sparse representations and
a variational approach: IEEE Trans. Image Process., 14, 1570-1582.

Starck, J., J. Fadili, and F. Murtagh, 2007, The undecimated wavelet decomposition
and its reconstruction: IEEE Trans. Image Process., 16, 297-309.

Sweldens, W., 1998, The lifting scheme: A construction of second generation wavelets:
SIAM Journal on Mathematical Analysis, 29, 511-546.

Voronin, S., and R. Chartrand, 2013, A new generalized thresholding algorithm for in-
verse problems with sparsity constraints: 38th International Conference on Acous-
tics, Speech, and Signal Processing, IEEE, 1636—-1640.

Woiselle, A., J. Starck, and J. Fadili, 2011, 3-D data denoising and inpainting with
the low-redundancy fast curvelet transform: J. Math. Imaging Vis., 39, 121-139.



National Engineering Laboratory for Offshore Oil Ezxploration, XJTU, August 31, 2021

A numerical tour of wave propagation

Pengliang Yang

ABSTRACT

This tutorial is written for beginners as an introduction to basic wave propagation
using finite difference method, from acoustic and elastic wave modeling, to reverse
time migration and full waveform inversion. Most of the theoretical delineations
summarized in this tutorial have been implemented in Madagascar with Matlab,
C and CUDA programming, which will benefit readers’ further study.

BASIC WAVE EQUATION

Define x = (z,y, z), time ¢, the s-th energy source function S(x,t;xs), pressure
p(x,t;x5), particle velocity v(x,t), material density p(x), the bulk modulus x(x).
Now we have

e Newton’s law

ov(x, t;x,
o0 XD _ Gy pix,), 1)
e Constitutive law
1 Op(x,t;x,) . _
I{(X) ot =V V(Xu t; XS) + S<X7 t; XS)' (2)

Acoustic wave equation

Acoustics is a special case of fluid dynamics (sound waves in gases and liquids) and
linear elastodynamics. Note that elastodynamics is a more accurate representation
of earth dynamics, but most industrial seismic processing based on acoustic model.
Recent interest in quasiacoustic anisotropic approximations to elastic P-waves.

Assume S(x, t;x,) is differentiable constitutive law w.r.t. time ¢. Substituting Eq.
(2) into the differentiation of Eq. gives

1 0%p(x,t;x,) (1 . x 8§(x,t;xs)
K(x) ot? =V (p(x)vP( X S)>+ ot ' 3)

*e-mail: ypl.2100@gmail.com

o7



58 Pengliang Yang TCCS-8

We introduce v(x) = /k(x)/p(x) (compressional p-wave velocity):
— . - . YA Y s ) 4
v2(x) 012 p(x)V (p(x) Vp(x,t,xs)) + p(x) = (4)

Under constant density condition, we obtain the 2nd-order equation

1 0°p(x,t;x,)

B o =V Pnx) + Lo tx) (5)

where V2=V -V = 88—;2 + 8722, fs(x,t;x,) = p(x)%. In 2D case, it is

O*p(x, t; X, O*p(x,t;x5)  O*p(x,t; X,
% = v*(x) ( (82’2 ) + (8$2 )> + fo(x, 15 %s). (6)

A shot of acoustic wavefield obtained at t=0.35s with 4-th order finite difference
scheme and the sponge absorbing boundary condition is shown in Figure [T}, where the
source is put at the center of the model. For 3D, it becomes

I*p(x, t;x, *p(x, t; X, Pp(x,t; X, 0*p(x, t; X,
<at2 >:U2<x>< <8Z2 ) . <W ), <8y2 >>+ fxtin) (7

Similarly, we put the source at the center of a 3D volume (size=100x100x100), per-
formed the modeling for 300 steps in time and recorded the corresponding wavefield
at kt=250, see Figure [2]

The above spatial operator is spatially homogeneous. This isotropic formula is
simple and easy to understand, and becomes the basis for many complicated general-
izations in which the anisotropy may come in. In 2D case, the elliptically-anisotropic
wave equation reads

0?p(x,t; X, *p(x, t; X, O*p(x, t; X,
(at2 ) — U%(x)% + v%(x)% + fo(x, t;%,) (8)

Here, T use the Hess VTI model shown in Figure [a] and Figure [3b] We perform
1000 steps of modeling with time interval At = 0.001s, and capture the wavefield at
t = 0.9s, as shown in Figure [4]

Elastic wave equation

In elastic wave equation, the modulus x(x) corresponds to two Lame parameters:
A2u = pvf7 and u = pv?, in which v, and v; denote the P- and S-wave velocity. The



TCCS-8 Primer for wave propagation 59

Lateral (km)
0 0.2 0.4 0.6 0.8

Sponge ABC(4th order):t=0.35s

Figure 1: A snap of acoustic wavefield obtained at t=0.35s with 4-th or-
der finite difference scheme and the sponge absorbing boundary condition.
primer/testfd2d/ snapfd2d

3D FD modeling:kt=250
0.12 )

0 0.1 0.2 0.3 0.4 N
x2 (km)

Figure 2: A wavefield snap recorded at kt=250, 300 steps modeled.
‘ primer /testfd3d/ snapfd3d




from rsf.proj import *

Flow('vel',None,
     	'''
     	math output=2.0 n1=200 n2=200 d1=0.005 d2=0.005
     	label1=x1 unit1=km label2=x2 unit2=km 
     	''')

Flow('wav','vel','sfTestfd2d nb=30 nt=400 dt=0.001')
Plot('wav','grey gainpanel=all title="Forward (4th order)" scalebar=y color=j scalebar=y',view=1)
Result('snapfd2d','wav',
	'''
	window n3=1 min3=0.35 |grey title="Sponge ABC(4th order):t=0.35s" label1=Depth 
	unit1=km label2=Lateral unit2=km screenratio=1 color=j 
	''')

End()



from rsf.proj import *

Flow('vel',None,
     	'''
     	math output=2.0 n1=100 n2=100 n3=100 
	d1=0.005 d2=0.005 d3=0.005 
     	label1=x1 unit1=km label2=x2 unit2=km 
	label3=x3 unit3=km 
     	''')


Flow('snapfd3d','vel','sfTestfd3d fm=20 dt=0.001 nt=250 kt=200 verb=y')
Result('snapfd3d',
       '''
       byte allpos=n gainpanel=all |
       grey3 flat=n frame1=10 frame2=25 frame3=25 color=j
       title="3D FD modeling:kt=250" point1=0.8 point2=0.8
       ''')

End()




60 Pengliang Yang TCCS-8

Distance (ft) Distance (ft)
20000 40000 60000 20000 40000 60000

- |

Figure 3: Two velocity components of Hess VTT model |primer/testaniso/ vp,vx

5000
5000

Depth (ft)
20000 10000
10000
Velocity (ft/s)
Depth (ft)
20000 10000
10000
Velocity (ft/s)

Lateral (km)
20000 40000

Depth (km)

Hess VTI:t=0.9s

Figure 4: Wavefield at kt = 0.9s, 1000 steps of modeling with time interval At =
0.001s performed. |primer/testaniso/ snapaniso

elastic wave equation can be written as

((Ov, 1,074 OTu.

o o T on)
Ov, 1,01, Ot
o e T

oT, v ov

X zz Tz z 9)
Y = (N+2p) 5 + A P
0T, B v, v,
o~ or T AT,

OTp.  Ovg n v,
(ot Mor THa:

where 7;; (sometimes o0;;) is stress, v; is particle velocity, i, = z,2. We display
the 2 components of elastic wave propagation at kt = 270, nt = 300 modeled with
At = 0.001 in Figure [0, in which the grid size is 200x200, the spatial interval is
Az = Az = 5m, and the velocities are chosen to be Vp = 2km/s, Vs = Vp/v/2.



from rsf.proj import *


# Download Hess VTI model
#########################
zcat = WhereIs('gzcat') or WhereIs('zcat')
for case in ('vp','epsilon'):
    sgy = 'timodel_%s.segy' % case
    sgyz = sgy + '.gz'
    Fetch(sgyz,dir='Hess_VTI',
          server='ftp://software.seg.org',
          top='pub/datasets/2D')
    # Uncompress
    Flow(sgy,sgyz,zcat + ' $SOURCE',stdin=0)
    # Convert to RSF format
    Flow(case,sgy,
         '''
         segyread read=data | 
         window j1=2 j2=2 | put d1=40 d2=40 
         unit1=ft label1=Depth unit2=ft label2=Distance 
         ''')

# Horizontal velocity
Flow('vx','vp epsilon',
     'math e=${SOURCES[1]} output="input*sqrt(1+2*e)"')

for case in ('vp','vx'):
    Result(case,
           '''
           grey color=j pclip=100 allpos=y bias=5000 
           scalebar=y barreverse=y wanttitle=n 
           barlabel=Velocity barunit=ft/s 
           screenht=5 screenwd=12 labelsz=6
           ''')

Flow('wav','vp vx','sfTestaniso vx=${SOURCES[1]} nb=30 fm=10 nt=1000 dt=0.001 verb=y')
Result('snapaniso','wav',
	'''
	window n3=1 min3=0.9 |grey title="Hess VTI:t=0.9s" label1=Depth unit1=km 
	label2=Lateral unit2=km screenht=5 screenwd=10 labelsz=6
	''')



End()



TCCS-8 Primer for wave propagation 61

Lateral (km) Lateral (km)
0.4 0.6 0.8

0 0.2 0.4 0.6 0.8

0.2

0.4
0.4

Depth (km)
0.6

Depth (km)
0.6

0.8

Component—x Component—z

Figure 5: Two components of elastic wave propagation at kt = 270, nt = 300 modeled
with At = 0.001. Grid size=200x200,Az = Az = 5m, Vp = 2km/s, Vs = Vp/\/2
primer/testelastic2d/ elasticxz

FORWARD MODELING

Taylor and Pade expansion

The Taylor expansion of a function f(z + h) at x is written as

_ of(x), , 1%f(z),, 1f(x), 4
flx+h)= f(x)+ 9 h+2! 97 h +3! B h®+. ... (10)
A popular example is
(1+x)a:1+am+wx2+...+a(a_l)nr'“(a_n—i_l)m"—k.... (11)

Here we mainly consider the following expansion formula:

1 1 5
x—gﬁ—~—3 o m < 1 (12)

(1_95)%:1_ 0=
16 128

N | —

The Pade expansion of Eq. follows from expansion in continuous fractions:

=1- (13)

=

(1—x)




from rsf.proj import *


Flow('vp',None,
     	'''
     	math output=2 n1=200 n2=200 d1=0.005 d2=0.005
     	label1=x1 unit1=km label2=x2 unit2=km 
     	''')
Flow('vs','vp', 
	'''
	math output="0.707*input" n1=200 n2=200 d1=0.005 d2=0.005
     	label1=x1 unit1=km label2=x2 unit2=km 
	''')
Flow('rho',None, 
	'''
	math output=1 n1=200 n2=200 d1=0.005 d2=0.005
     	label1=x1 unit1=km label2=x2 unit2=km 
	''')

Flow('wavz wavx','vp vs rho',
	'''
	Testelastic2d  vs=${SOURCES[1]} rho=${SOURCES[2]} wavx=${TARGETS[1]} 
	nb=30 fm=25 nt=300 kt=270 dt=0.001
	''')

Plot('wavx',
     '''
     grey title="Component-x" screenratio=1
     label1=Depth unit1=km label2=Lateral unit2=km color=i 
     ''')
Plot('wavz',
     '''
     grey title="Component-z" screenratio=1
     label1=Depth unit1=km label2=Lateral unit2=km color=i 
     ''')
Result('elasticxz','wavx wavz', 'SideBySideIso')

End()



62 Pengliang Yang TCCS-8

I provide an informal derivation:

1 Xz
=l—-z2=2=1-y*=01-y)(14+y)=>1—y=
y=01-x) y=>0-y)1+y) V=1,
x x x/2
v=l-r T iras sy T e
Y Ity T Ty
2 2
1- —_z_ 1 - z/2
T+y ~Tiy
The 1st-order Pade expansion is:
u—@%=1—g (14)
The 2nd-order Pade expansion is:
2
ﬂ—@%ﬂ—xh. (15)
=7
And the 3rd-order one is:
1 l’/2
(o)t =1- =, (16)

Approximate the wave equation

The innovative work was done by John Claerbout, and is well-known as 15° wave
equation to separate the up-going and down-going waves (Claerbout, 1971, |1986).

Eliminating the source term, the Fourier transform of the scalar wave equation
(Eq. (B))) can be specified as:

2

Lok (17)

02
The down-going wave equation in Fourier domain is

Jw? w v2k2

Using the different order Pade expansions, we have:

( 2/{32
1st — order :k, = hd (1 Y "’”)

v 2w?
w 202k2
2
2nd —order :k, = — | 1 — —*—=
v 4 - L3
w
w v2k2 . vikd (19>
2 4
3rd — order ik, = — | 1 — 22—~
v 11
2w?
w vikZ vkl
2 4
4th —order th, = — [ 1 — —2= A=
v 1— 3v2k2 vikd
\ 4(,02 16w4



TCCS-8 Primer for wave propagation 63
The corresponding time domain equations are:
( 0? 0? 102
Ist — order : T gz + ga—;; — Ea_£ = 0, (the well — known 15° wave equation)
Pp v Pp 183 3v 0% . .
2nd — order 5295 4020, vor T 1920t 0, (45° wave equation)
Mp v O 1 o*p o*p v3 0%p
3rd — order : — — v - — =
O30z 2 0220tdz v Ot 0x20t> 8 Ozt
4th "~ order 0°p B 3?2 Op B vt 0p 10°p 5v 0p N 50 Pp
Ot 0z 4 0x?20t?0z 160z%*0z v otd 4 0x?0t3

16 Otdzt
(20)

Absorbing boundary condition (ABC)

Clayton-Enquist boundary condition

To simulate the wave propagation in the infinite space, the absorbing boundary con-
dition (ABC), namely the proximal approximation (PA) boundary condition, was
proposed in [Clayton and Engquist| (1977) and Engquist and Majda/ (1977)). The ba-
sic idea is to use the wave equation with opposite direction at the boundary. Take
the bottom boundary as an example. Here, allowing for the incident wave is down-
going, we use the up-going wave equation at the bottom boundary. Using a model
including 3 layers (Figure (1)), Figure [2] displays 10 shots data volume obtained the
Clayton-Enquist boundary condition.

X2 (km

velocity model: 3 layers

0.2
1.9

x1 (km)
0.6 0.4
1.7 1.8

0.8

1.6

Figure 6: Velocity model: 3 layers ’primer /modeling2d/ Vel‘




from rsf.proj import *

Flow('vel0',None,
     	'''
     	math output=1.6 n1=50 n2=200 d1=0.005 d2=0.005
     	label1=x1 unit1=km label2=x2 unit2=km 
     	''')

Flow('vel1',None,
     	'''
     	math output=1.8 n1=50 n2=200 d1=0.005 d2=0.005
     	label1=x1 unit1=km label2=x2 unit2=km 
     	''')
Flow('vel2',None,
     	'''
     	math output=2.0 n1=100 n2=200 d1=0.005 d2=0.005
     	label1=x1 unit1=km label2=x2 unit2=km 
     	''')
Flow('vel',['vel0','vel1','vel2'], 'cat axis=1 ${SOURCES[1:3]}')

Result('vel','grey title="velocity model: 3 layers" color=j scalebar=y')

Flow('shots','vel',
	'''
	modeling2d nt=1100 dt=0.001 ns=10 ng=200	
	sxbeg=5 szbeg=2 jsx=20 jsz=0 
	gxbeg=0 gzbeg=3 jgx=1 jgz=0 	
	''')

Result('shots',
	'''
       byte allpos=n gainpanel=all |
       grey3 flat=n frame1=300 frame2=100 frame3=5 
       label1=Time unit1=s 
       label2="Receiver no." label3="Shot no."
       title="Shot records" point1=0.8 point2=0.8
	''')

Plot('shots','grey title=Shots',view=1)


End()



64 Pengliang Yang TCCS-8

Shot records
0.5

0.2

0.4

Time (s)
0.6

0.8

0 0.2 0.4 0.6 0.8 O ¢
Receiver no. (m)

Figure 7: 10 shots data volume obtained using the Clayton-Enquist boundary condi-
tion. |primer/modeling2d/ shots

Sponge ABC

The sponge ABC was proposed by (Cerjan et al.| (1985]). The principle is very simple:
attenuating the refections exponentially in the extended artificial boundary (Figure
1)) area by multiplying a factor less d(u) than 1. Commonly, we use the factor

d(u) = exp(—[0.015 % (nb — 1)]?),u = z, z(iAz or iAz) (21)

where nb is the thickness of the artificial boundary on each side of the model. Usually,
we choose it to be nb = 20 ~ 30. The sponge ABC can be easily applied to a wide
range of wave propagation problems, including some governing wave equations for
complicated medium.

Perfectly Matched Layer (PML)

The PML ABC was proposed in electromagnetics computation (Berenger, |1994)). In
seismic wave propagration community, two versions of PML boundary condition have
been developed: the split PML (SPML) and nonsplit PML (NPML).




TCCS-8 Primer for wave propagation 65

d(z) #£0
Bl B4

Figure 8: A schematic diagram of extended artificial boundary area. A;AsAsAy is
the original model zone, which is extended to be By By B3B4 with artificial boundary.
In the extended bounary area, the attenuation coeffcient d(u) # 0; In the model zone
A1A2A3A4, d(u) = 0, u=2ax,z.

Split PML (SPML) for acoustics

It is possible for us to split the wave field into two components: x-component p, and
z-component p, (Carcione et al. 2002). Then the acoustic wave equation becomes

P =Dz + D
Op» 50U,
=0
ot ox
dp.  ,0v,
ot - 0z (22)
ov, Op
ot Ox
Ov, Op
\ at _Bz



66 Pengliang Yang TCCS-8

To absorb the boundary reflection, by adding the decaying coefficients d(u) the SPML
governing equation can be specified as (Collino and Tsogka, |2001)

P=pe+p:
861;1 + d(z)p, = vg%
B i =G (23)
aavtx +d(x)v, = g—i
\ %Utz +d(2)v, = %

where d(z) and d(z) are the ABC coefficients designed to attenuate the reflection in
the boundary zone, see Figure There exists many forms of ABC coefficients func-
tion. In the absorbing layers, we use the following model for the damping parameter
d(x) (Collino and Tsogkal, 2001)):

=)%do = =52 In(R),u =, (24)

where L indicates the PML thinkness; x represents the distance between current
position (in PML) and PML inner boundary. R is always chosen as 1072 ~ 107°.
It is important to note that the same idea can be applied to elastic wave equation
(Collino and Tsogkay, |2001). The split version of wave equation is very suitable for the
construction of seismic Poynting vector. A straightforward application is the angle
gather extration using Poynting vector, see Section |

d(u) = dof

A numerical example of SPML using 8th order staggered finite difference scheme
is given in Figure [9]

Nonsplit Convolutional-PML (CPML) for acoustics

Another approach to improve the behavior of the discrete PML at grazing incidence
consists in modifying the complex coordinate transform used classically in the PML
to introduce a frequency-dependent term that implements a Butterworth-type filter
in the layer. This approach has been developed for Maxwells equations named convo-
lutional PML (CPML) (Roden and Gedney, [2000) or complex frequency shifted-PML
(CFS-PML). The key idea is that for waves whose incidence is close to normal, the
presence of such a filter changes almost nothing because absorption is already almost
perfect. But for waves with grazing incidence, which for geometrical reasons do not
penetrate very deep in the PML, but travel there a longer way in the direction parallel
to the layer, adding such a filter will strongly attenuate them and will prevent them
from leaving the PML with significant energy .

Define Ax = g—g, Az = %. Then the acoustic wave equation reads

Po_ (04 | 0:
3t2_v ox 0z |



TCCS-8 Primer for wave propagation 67

Lateral (km)
0 0.2 0.4 0.6 0.8

o | | | |

0.4 0.2
L

Depth (km)
0.6

0.8
|

SPML(8th order):t=0.35s

Figure 9: Wavefield snap of SPML with 8th order finite difference
’ primer /testspml/ snapspml ‘

To combine the absorbing effects into the acoustic equation, we merely need to com-
bine two convolution terms into the above equations:

( a2p

@:UQ(PQT‘FPZ)
pr= 947 Ly
ox
A
P94y (25)

0z
dp
Az ==+ &,
T 8x+
dp
Az = == + &,
| z 8z+

where W,, W, are the convolution terms of Ax and Az; ®,, ®, are the convolution

terms of Px and Pz. These convolution terms can be computed via the following
relation:

U =, U 4 (b, — 1) V2 A
U =, 0" 4 (b, — 1) 12 Az
O = b, d" ! + (b, — 1) V2P
O = b, ®" L 4 (b, — 1) V2P

(26)



from rsf.proj import *

Flow('vel',None,
     	'''
     	math output=2.0 n1=200 n2=200 d1=0.005 d2=0.005
     	label1=x1 unit1=km label2=x2 unit2=km 
     	''')

Flow('wav pz px','vel','sfTestspml pz=${TARGETS[1]} px=${TARGETS[2]} nb=30 nt=400 dt=0.001 verb=y kt=250')
Plot('wav','grey gainpanel=all title="Forward (8th order)" scalebar=y color=j scalebar=y',view=1)
Result('snapspml','wav',
	'''
	window n3=1 min3=0.35 |grey title="SPML(8th order):t=0.35s" label1=Depth 
	unit1=km label2=Lateral unit2=km screenratio=1 color=j 
	''')

Result('pz','grey title="Component-z" label1=Depth unit1=km label2=Lateral unit2=km screenratio=1 color=j')
Result('px','grey title="Component-x" label1=Depth unit1=km label2=Lateral unit2=km screenratio=1 color=j')

End()



68 Pengliang Yang TCCS-8

where b, = e~ “PA and b, = e~ AL More details about the derivation of C-PML,

the interested readers are referred to (Collino and Tsogka| (2001) and |[Komatitsch and
Martin! (2007)).

Nonsplit PML (NPML) for elastics

The nonsplit PML for elastic implementation is

( Ov, (GTM n 5sz>
p ot ox 0z
v, 0Ty,  OT..

Par = Gy T o) e e
or, ov ov
Trxr — i z _ 27
5 (A2 )ax +A8 — AN+ 2u) T,y — AT, (27)
8722 0v, ov,

OTp. %+ ov,
(ot Par TPz

where the auxiliary variables are governed via the following relation

(0 B OTpw OS)y, B 0Ty
5t +d(x)Qye = d(x) 5 O +d(2)Qy, = d(2) 5
082, B 0Ty, OS2, B 0T,
T +d(x)Q,, = d(x) 5 Ot +d(2)2,, = d(2) 5 )
oV, B ov, OV, B o0v,
T +d(z)V,, = d(x) o O +d(2)V,, =d(z) P
ov,, B ov, OV, B ov,
T +d(z)V,, = d(zx) o Ot +d(2)V,, =d(2) P
Discretization
The Taylor series expansion of a function f(z) can be written as
_ of(x), 10°f(x),, 1f(x),,
o = gio)+ S5 e g S g
N 0f(x),  10°f(z),, 1f(x),,
flz —h) = f(x) e h+2! 92 h ST h®+ ...
It leads to
fla+h)+ flz—h) 1O%f(x),,  1O'f(2),,
2 =IO e M e T (30)
St h) = fw—h) _0f@), 1), 100,
2 Ox 3! O3 51 b



TCCS-8 Primer for wave propagation 69

Let h = Az /2. This implies
of(x)  flae+Ax/2) — f(x — Ax/2)

ox - Az + O(AZ’Q) (31)
PR (CATTLIRS (CRSTE RPN

Higher-order approximation of staggered-grid finite difference

To approximate the 1st-order derivatives as accurate as possible, we express it in the
following

of _ flz+ Ax/2) —f(x—Ax/2)+

or Az
a2f(x + SAx/Zé;xf(x - 3Aa:/2)+
asf(m + 5Am/2)5;£(x — 5Ax/2) L
f(x+ Axf2) — f(x — Ax/2) (32)
—a Az *
flz+3Az/2) — f(z — 3Az/2)
Co Ar +
f(z +5Azx/2) — f(z — 5Az/2)
e Az *

where ¢; = a;/(2¢ — 1). Substituting the f(x + h) and f(x — h) with for h =
Ax/2,3Ax/2,... results in

0 0 Ax 03
8—£:01<Axa—f+1( )8J;: >/A$

of 1.3Ax.,0%f
<3Ax8x+ (—— 5 )Zﬁ+~~>/Ax

of 1,5Az ,0%f
<5A:Uax S5 ~->/Aa:+...

=(c1 4+ 3¢ + 5¢3 + Tey + - )8£

+ ﬁx; (c1 + 3%co + 5%c3 + TPey + - --)% (33)
+ ?gt(01+3502+5563+7564+" )gi{: + -

=(a1 +ax+ag+as+ - )g£

+ ix;(al+32a2+52a3+72a4+~-~)%
+ﬁx;l(al+34a2+54a3+74a4+~~)%+~~~



IS

© oo ~ (=] o

10

11

12

70 Pengliang Yang TCCS-8

Thus, taking first N terms means

¢

ay+axtaz+---+ay=1
a1—|—32a2+52a3+~--+(2]\7—1)2aN:0
ar + 3'as +5%az + -+ (2N — 1)*ay =0 (34)

L a; + 32N_26L2 + 52N_26L3 + - ) + (QN — 1)2N_26LN =0

In matrix form,

1 1 e 1 aq 1
12 3. 2N —1)2 a 0
. R =1 (35)
12N=2 32N=2 (2N —1)2N72] |ay 0
~~ 7 N——
A% a b
The above matrix equation is Vandermonde-like system: Va = b, a = (a;, as, ..., ayx)?.
The Vandermonde matrix
1 1 1
A (36)
xf}’l :r;év’l | :c%"l

in which z; = (2i — 1)?, has analytic solutions. Va = b can be solved using the
specific algorithms, see Bjorck| (1996). And we obtain

% _ Aix ; (f(@+ida)2) — fz —ide/2) + O(AZ?Y) (37)

The MATLAB code for solving the 2/N-order finite difference coefficients is provided
in the following.

function c=staggered_fdcoeff(NJ)

N=NJ/2;

x=zeros (N,1);

b=zcros (N,1); b(1)=1;
c=b;

for k=1:N




13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

TCCS-8 Primer for wave propagation

end

for

end

for

end
for

end

x(k)=(2xk—1)"2;

k=1:N-1
for i=N:—-1:k+1
b(i)=b(i)—x(k)*b(i—1);

end

k=N—-1:—-1:1
for i=k+1:N
; b(1)=b(i)/(x(1)—x(i-k));

for i=k:N-1
b(i)=b(i)=b(i+1);

end

k=1:N
c(k)=b(k)/(2xk—1);

71

In general, the stability of staggered-grid difference requires that

1 1 1
At max(v)y / NN < S
i=1 1Ci

Define C' = —x*—. Then, we have

In the 2nd-order case, numerical dispersion is limited when

N
Z¢:1 lei

(

C=1

C =0.8571
C' = 0.8054
C =0.7774
C =0.7595

=2 =222 7=
Il
Ot = W N =

r

min(v)

max(Az, Az) < 107,

The 4th-order dispersion relation is:

min(v)

5fmax ‘

max(Ax, Az) <




72 Pengliang Yang TCCS-8

Discretization of SPML

Take

50U,

ox

Ops
ot

+d(x)p, =v

for an example. Using the 2nd-order approximation in Eq. , we expand it at the
time (k + 1)At and the point [izAz,izAz]

k+3

1
Pl iz) = phfimiz] | g i) ephfiis) e et dis] e i)
At 2 Ax

(41)

That is to say,

o 1 — 0.5Atdfix] .. . 1 Atv?liz,iz], k1l 1 kel 1
k+1 _ k ? 2 _ — 2 ——

Po liwyi2] = 1+ O.5Atd[ix]px[m’m]+1 + 0.5Atd[ix] Ax (ve [Zx+2’22] R 2’ZZ])

(42)

At time kAt and [ix + %, iz], we expand

v, op
d(z)v, = 2L
ot +d(z) Ox
as
1 1 1 1
s iz + 5,i2] — v iz + 3, 2] i ]v§+2 iz + 5, iz2] + o2 liw+ 5,i2]  pFliz + 1,i2] — pFliw, i2]
7 —_=
At ! 2 Az
(43)
Thus, we have
el 1 1—05Atdfia] w-r 1 1 At oo
x ) - . x ) 1A 17 - )
v [2I+2 iz g 0.5Atd[m]v [w—i—Q zz]—i—l 05A L[] A (p"liz+1,iz]—p"[iz,iz])

(44)



TCCS-8 Primer for wave propagation 73

In summary,

(

1 — 0.5A¢dfix] k-1

L1
T 05Atdm] ety

k+1
[ 2

Vg

i+ 3 iz] =

1 At
1+ 0.5Atd[iz] Ax
1 1-05Atd[iz] gy 1
EE | I wwiryvr o L G T
g 0.51Atd[iz] %(pk[m’ iz + 1] = p'liz, iz))

(p*lix + 1,iz] — p*[iz, iz])

1
v 2|

o 1 — 0.5Atdiz] .. . (45)
k+1 _ k
pz [Z:L‘: ZZ] - 1 + 05Atd[2$] pz [Zl'a ZZ]_’_
1 Atv?liz,iz]), kel 1 ki1
1 + 0.5Atd[ix] Ax (v i + 2’ i2] — v e = 2’ iz])
. 1-05AtdliZ] .. .
k41 _ k
pz [2]}'722] - 1 +05Atd[lZ]pZ[2x7ZZ]+
1 Atv?liz,iz], ki1 ki1
TTOBAME  Ar (v limizd gl e iz — g
\ PP iz, iz) = pi T iz, i2] + p i, iz]
If we define: | — 0.5A%d
il N —Atd 46
T 05a00 )~ SP(=AMd) (46)

we can easily find that ¢’ is a good approximation of b up to 2nd order, allowing for
the 2nd order Pade expansion:

N 1+0.5z2

~~ 4
exp(2) & = (47)
Then, we have
Atd
l-brl1—-b=—"—— 48
1+ 0.5Atd (48)
Discretization of NPML
Note that all sub-equations can be formulated in the following form:
of
— +df = 1. 49
5 T =1 (49)
The analytic solution of this equation is
1 1
f=—=Se = (50)

d 4’



74 Pengliang Yang TCCS-8

In discrete form,

1 1
At) = — = —dkAt -

. 1 (51)
F(k+1)At) = ——eHemdhAl 4
d d
Thus,
1
F((k+1)AL) = e (kAL + (1= ey (52)
For %= + d(z)Q, = d(x)%=, v = d(z) %=, the update rule becomes
aTk—f—l/Q aTk+1/2
QkJrl _ 7d(:r)AtQk 1 — —d(z)At Tx _ bek 1 — bg: Tx

it = el 4 (1@ I ot )T (a)

where b, = e~ U2 and b, = e DA Qo Qs Vo, oy Voo, Uon, U, and ¥, can
be obtained in the same way:

( k+1/2 k+1/2

0 = 0,08, + (1) T ok b0k 4 (10T
xXr z

o ari?

QL = 0,08, + (1 b) 5 Q8 = 008 + (1 - )=
i z
) o k+1/2 P k+1/2 (54)

U = p UF 4 (1 —b,) g SR —p ok 41— bz)g—
X z

P k+1/2 ) k+1/2

Yl —p OF (1 —b,)—= PP —p UF 4 (1 —b)——
\ zr zZx + ( ) ax Y zZZ zzZ + ( ) az

As can be seen from Eq. , we only need to subtract the reflection part €2 and
U after global updating (Eq. @) We summarize this precedure as follows:

Step 1: Perform the computation of Eq. @D in whole area;
Step 2: In PML zone, subtract decaying parts according to Eq. .

REVERSE TIME MIGRATION (RTM)
Brief overview

One-way equation based imaging techniques are inadequate to obtain accurate images
in complex media due to propagation direction changes in the background model
(Biondi, 2006)). These approaches are extremely limited when handling the problems
of turning waves in the model containing sharp wave-speed contrasts and steeply
dipping reflectors. As an advanced imaging technology without dip and extreme
lateral velocity limitation, reverse time migration (RTM) was proposed early (Baysal



TCCS-8 Primer for wave propagation 75

et al., |1983; [McMechan) [1983), but not practical in terms of stringent computation
and memory requirement. However, it gained increasingly attention in recent years
due to the tremendous advances in computer capability. Until recently, 3D prestack
RTM is now feasible to obtain high fidelity images (Yoon et al., 2003; Guitton et al.,
2000)).

RTM implementation

RTM can be carried out as follows: (1) forward-extrapolating the source wavefield,(2)
backward-extrapolating the receiver wavefield, both explicitly in time, and (3) apply
an imaging condition.

Imaging condition

The cross-correlation imaging condition can be expressed as

Z/tm“ dths X, ;X )P (X, ;%) (55)

where /(x) is the migration image value at point x; and ps(x,t) and p,(x,t) are the
forward and reverse-time wavefields at point x. With illumination compensation, the
cross-correlation imaging condition is given by

Z fgmdx de Zg 1p8(X t'XS>pg(X t; Xg)

Otm" dtps(x,t; %) ps(X, t; %) + 02

(56)

in which o2 is chosen small to avoid being divided by zeros.

There exists a better way to carry out the illumination compensation, as suggested
by |Guitton et al.| (2007)

ns tmax
Z fo de Eg L s (X, 1 X6)pg (X, 5 %)

tmax
s=1 fo dtps <X7 t) XS)ps (X, t; XS)>J},y,z

I(x) = (57)

where (),,.. stands for smoothing in the image space in the x, y, and z directions.

Yoon et al.| (2003) define the seismic Poynting vector as

dp
S=vp=Vp

1 tp = (Vzp, V:D). (58)

Here, we denote S5 and S, as the source wavefield and receiver wavefield Poynting
vector. As mentioned before, boundary saving with split PML is a good scheme
for the computation of Poynting vector, because p and (v,,v,) are available when



76 Pengliang Yang TCCS-8

backward reconstructing the source wavefield. The angle between the incident wave
and the reflected wave can then be obtained:

Ss : Sr
7 = arccos (59)
[S: IS+
The incident angle (or reflective angle) is half of 7, namely,
1 Ss-S
0=—=— - 60
5 QarCCOS!SsHSr! (60)

Using Poynting vector to confine the spurious artefacts, Yoon and Marfurt| (2006))
propose a hard thresholding scheme to weight the imaging condition:

¢
N[ dE Y pa(x, X )pg (X, tx, )W (6
I(x) _ Z fo 2971]9 ( )pg( g) ( )

7 (61)
s=1 fomax dtpS(X7t;X8)p5(X7t;Xs) _|’ 02
where
10 < Onax
Wy =q, o (62)
0 otherwise
Costa et al. (2009) modified the weight as
3 0
W () = cos (5) (63)

These approaches are better for eliminating the backward scattering waves in image.

Computation strategies and boundary saving

There are several possible ways to do RT'M computation. The simplest one may be
just storing the forward modeled wavefields on the disk, and reading them for imag-
ing condition in the backward propagation steps. This approach requires frequent
disk I/O and has been replaced by wavefield reconstruction method. The so-called
wavefield reconstruction method is a way to recover the wavefield via backward re-
constructing or forward remodeling, using the saved wavefield shots and boundaries.
It is of special value for GPU computing because saving the data in device variables
eliminates data transfer between CPU and GPU. By saving the last two wavefield
snaps and the boundaries, one can reconstruct the wavefield of every time step, in
time-reversal order. The checkpointing technique becomes very useful to further re-
duce the storage (Symes, |2007; |[Dussaud et al., [2008). It is also possible to avert the
issue of boundary saving by applying the random boundary condition, which may
bring some noises in the migrated image (Clapp, 2009; Clapp et al., [2010; Liu et al.,
2013blla)).

Yang et al| (2014) proposed an effective boundary for regular and staggered-grid
finite differences. In the case of regular grid finite difference of order 2N, we need



TCCS-8 Primer for wave propagation 7

to save N points on each inner side in the model zone to reconstruct the wavefield.
For staggered grid finite difference of order 2N, we need to save 2N — 1 points on
each inner in the model for perfect reconstruction. The concept of effective boundary
saving does not depends on C or GPU implementation. However, it is of special
value for GPU implemenation, because it eliminates the CPU-GPU data transfer
for boundary saving. An example of effective boundary saving for regular grid finite
difference is given in Figure The imaging examples using effective boundary saving
with staggered-grid finite difference can be found in the next section.

Lateral (km) Lateral (km)
0 0.2 OI4 OI6 OIB 0 OIZ OI4 0?6 OIB

* 7 N

0‘2
0.2

[ T+
N O & O
& £
) )
e o
ELL07 FLQOi
= Ao

0‘8
OIS

A

Forward:t=0.2s Forward:t=0.35s
Lateral (km) Lateral (km)
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
o L Il L L o Il Il Il Il
=3 ol
=< =<
E 3 EST
= 3
2o | o |
a e a e
[ve} s}
o'@ a ol
Backward:t=0.35s Backward:t=0.2s

Figure 10: The forward modeled wavefield can be exactly reconstructed using effective
boundary saving. ’primer/ testeb/ fb‘

Numerical examples

I show my GPU-based RTM result for two benchmark models: Marmousi model
1994) and Sigsbee model (DiMarco et al., 2001). Here, I use CPML boundary




from rsf.proj import *


Flow('vel',None,
     	'''
     	math output=2.0 n1=200 n2=200 d1=0.005 d2=0.005
     	label1=x1 unit1=km label2=x2 unit2=km 
     	''')


Flow('wavf wavb','vel','sfTesteb back=${TARGETS[1]} nb=30 nt=500 dt=0.001 ns=1 ng=200')


Plot('wavf','grey gainpanel=all title=Forward scalebar=y color=j',view=1)
Plot('wavb','grey gainpanel=all title=Backward scalebar=y color=j',view=1)

Plot('snap1f','wavf',
	'''
	window n3=1 min3=0.2 |grey title="Forward:t=0.2s" label1=Depth unit1=km 
	label2=Lateral unit2=km screenratio=1 color=j
	''')
Plot('snap2f','wavf',
	'''
	window n3=1 min3=0.35 |grey title="Forward:t=0.35s" label1=Depth unit1=km 
	label2=Lateral unit2=km screenratio=1 color=j
	''')

Plot('snap1b','wavf',
	'''
	window n3=1 min3=0.2 |grey title="Backward:t=0.2s" label1=Depth unit1=km 
	label2=Lateral unit2=km screenratio=1 color=j
	''')
Plot('snap2b','wavf',
	'''
	window n3=1 min3=0.35 |grey title="Backward:t=0.35s" label1=Depth unit1=km 
	label2=Lateral unit2=km screenratio=1 color=j
	''')
Result('fb','snap1f snap2f snap2b snap1b','TwoColumns')


End()



78 Pengliang Yang TCCS-8

condition to obtain high quality imaging result.

The Marmousi model is shown in Figure The spatial sampling interval is
Ax = Az = 4m. 51 shots are deployed. In each shot, 301 receivers are placed in
the split shooting mode. The parameters we use are listed as follows: nt = 13000,
At = 0.3 ms. Due to the limited resource on our computer, we store 65% boundaries
using page-locked memory. Figure and give the resulting RTM image after
Laplacian filtering. As shown in the figure, RTM with the effective boundary saving
scheme produces excellent image: the normalized cross-correlation imaging condition
greatly improves the deeper parts of the image due to the illumination compensation.
The events in the central part of the model, the limits of the faults and the thin layers
are much better defined.

Lateral (km)

Depth (km)

Marmousi model

Figure 11: The Marmousi velocity model. ‘primer/ marmousi/ marmousi

The Sigsbee model is shown in Figure The spatial interval is Ax = Az =
25m. 55 shots are evenly distributed on the surface of the model. We still perform
nt = 13000 time steps for each shot (301 receivers). Due to the larger model size,
75% boundaries have to be stored with the aid of pinned memory. Our RTM results
are shown in Figure and [I4b] Again, the resulting image obtained by normal-
ized cross-correlation imaging condition exhibits better resolution for the edges of
the salt body and the diffraction points. Some events in the image using normal-
ized cross-correlation imaging condition are more visible, while they have a much
lower amplitude or are even completely lost in the image of cross-correlation imaging
condition.

FULL WAVEFORM INVERSION (FWI)

Time domain FWI was proposed by Tarantola (1984), and developed in [Tarantola
(1986); [Pica et al.|(1990). Later, frequency domain FWI was proposed by [Pratt et al.




from rsf.proj import *

Fetch('marmvel.hh','marm')
Flow('vel','marmvel.hh',
     '''
     dd form=native | math output="0.001*input"|
     put n1=751 o1=0 d1=0.004 label1=Depth   unit1=km
     	 n2=2301 o2=0 d2=0.004 label2=Lateral unit2=km
     ''')

Result('marmousi','vel',
     '''
     grey title="Marmousi model" wantitle=y allpos=y color=j
     pclip=100 scalebar=y bartype=v barlabel="V" barunit="m/s"
     ''' )

Flow('mimag1 mimag2','vel',
	'''
	gpurtm imag2=${TARGETS[1]} NJ=6 phost=65
	fm=25 dt=0.0003 tdmute=300
	nt=13000 ns=51 ng=301 
	jsx=40 jsz=0 jgx=1 jgz=0 
	sxbeg=150 szbeg=1 gxbeg=0 gzbeg=1 
	vmute=1.52
	''')

Result('mimag1','grey allpos=n title="correlation"')
Result('mimag2','grey allpos=n title="normalized_correlation" ')

End()




TCCS-8 Primer for wave propagation 79

Lateral (km) Lateral (km)
0 1 2 3 4 5 6 7 8 9

1.5

—~
g
A
=6
< -
e}

o,
%
a

Depth (km)
2

2.5

correlation normalized_correlation

Figure 12: RTM result of Marmousi model using effective boundary saving
scheme (staggered grid finite difference). (a) Result of cross-correlation imag-
ing condition.  (b) Result of normalized cross-correlation imaging condition.
‘ primer/marmousi/ mimagl,mimag2 ‘

Lateral (kft)

20 30 40 50 60 70 80

Depth (kft)
20 10
8 10 12 14
V (kft/s)

6

30

Velocity

Figure 13: The Sigsbee velocity model. |primer/ sigsbee/ sigsbee|




from rsf.proj import *

# Download velocity model from the data server
##############################################
vstr = 'sigsbee2a_stratigraphy.sgy'
Fetch(vstr,'sigsbee')
Flow('zvstr',vstr,'segyread read=data')

Flow('vel','zvstr',
     '''
     put d1=0.025 d2=0.025 o1=0 o2=10.025 
     label1=Depth unit1=kft label2=Lateral unit2=kft |
     scale dscale=0.001 
     ''')

Result('sigsbee','vel',
       '''
       grey title=Velocity titlesz=7 color=j
       screenratio=0.375 screenht=4 labelsz=5 scalebar=y
       mean=y bartype=v barlabel="V" barunit="kft/s"
       ''')


Flow('simag1 simag2','vel',
	'''
	gpurtm imag2=${TARGETS[1]} NJ=6 phost=75
	fm=15 dt=0.0008 tdmute=300
	nt=13000 ns=55 ng=301 
	jsx=50 jsz=0 jgx=1 jgz=0 
	sxbeg=150 szbeg=1 gxbeg=0 gzbeg=1 
	vmute=4.72
	''')

Result('simag1','grey allpos=n title="correlation"')
Result('simag2','grey allpos=n title="normalized_correlation"')

End()




80 Pengliang Yang TCCS-8

Lateral (kft)
20 30 40 50 60 70 80 90

(@) ‘ Y A AV AY A AT A A A AT A Y A A A AT T AR R

Depth (kft)
25 20 15 10

30

correlation

Lateral (kft)
20 30 40 o0 60 70 80 90

Depth (kft)
15 10

20

25

30

normalized correlation

Figure 14: RTM result of Sigsbee model using effective boundary saving
scheme (staggered grid finite difference). (a) Result of cross-correlation imag-
ing condition.  (b) Result of normalized cross-correlation imaging condition.
primer/sigsbee/ simagl,simag2




TCCS-8 Primer for wave propagation 81

(1998). Actually, many authors call it full waveform tomography. (tomography=fwi,
imaging=migration) Here, we mainly follow two well-documented paper Pratt et al.
(1998) and |Virieux and Operto (2009). We define the misfit vector Ap = p_,; — Pups
by the differences at the receiver positions between the recorded seismic data p,,
and the modelled seismic data p,,, = f(m) for each source-receiver pair of the seismic
survey. Here, in the simplest acoustic velocity inversion, m corresponds to the velocity
model to be determined. The objective function taking the least-squares norm of the
misfit vector Ap is given by

ng ns tﬂl‘lX

( ) = _ApTAp - ApTAp — ZZ/ dt|pcal th Xs) pobs(xrat;xs>|2

r=1 s=1
(64)
where ns and ng are the number of sources and geophones, 1 denotes the adjoint
and * the complex conjugate, while f(-) indicates the forward modeling of the wave
propagation. The recorded seismic data is only a small subset of the whole wavefield.

The minimum of the misfit function E(m) is sought in the vicinity of the starting
model my. FWI is essentially a local optimization. In the framework of the Born
approximation, we assume that the updated model m of dimension M can be written
as the sum of the starting model my plus a perturbation model Am: m = my+ Am.
In the following, we assume that m is real valued.

A second-order Taylor-Lagrange development of the misfit function in the vicinity
of my gives the expression

OE( 02 E(
E(mo+Am) = E(my +Z (mo) ZZ TEm) \ o A +0(]| Am?)

== om;0m;

(65)
Taking the derivative with respect to the model parameter m; results in

OE(m) _ OB(my) | 2 9?E(m,)

A =1,2,..., M. 66
(9mi 8ml = ('3m]8m1 m],l T ’ ( )

Briefly speaking, it is

OE(m) 0E(my) 0*E(my)
om  Om + om? Am (67)
Thus,
_ (PE(my)\ ' 9E(mg) .,
where

VEm

g e ey

om om; = Oms omyy



82 Pengliang Yang TCCS-8

and
C92E(mg)  92E(mo) 9?E(mo) ]
wy dmm  mm
H— 32E<m0) _ aQE(mO) _ 8m2m(1J Bmgo T 8ﬂ12m1€1 (70)
om? om;0m; : ) :
92E(mg)  92E(mg) 82 E(mo)
| Omymi Ompma omy |

VE, and H are the gradient vector and the Hessian matrix, respectively.

The Newton, Gauss-Newton, and steepest-descent methods
In terms of Eq. ,
0B(m) 1Ay OPear (O
8mi - 5 Z Z/dt |:( aml (pcal - pobs) + aml (pcal - pobs)
ng ns
— ZZ/dtRe K%pwl
r=1 s=1 i
T T
= Re % Ap| =Re Of(m) Ap|,i=1,2,..., M.

That is to say,

)* Ap} (AP = Deat — Pobs) (71)

B _ 9BE(m) Of(m)\ " B ;
VEn=VE(m) = . Re [(a—m Ap| =Re [JTAp] (72)
where Re takes the real part, and J = % = % is the Jacobian matrix, i.e., the

sensitivity or the Fréchet derivative matrix.

Differentiation of the gradient expression ([71)) with respect to the model parame-
ters gives the following expression for the Hessian H:

H, - PE(m) 0 (aE(m)> _ aa . [(%)TAP

N om;0m; N om; om; m; om;

9 OPcai r 0 0P u; T apT 0D
- < Ap*| = ca Ap* ca ca
om; e [( om; ) P Re lamj ( om; p | +Re dm; Om;
(73)
In matrix form
82E(m) aJT . . )
H= om? :Re[JTJ}—l—Re [amT(Ap,Ap,...,Ap )1 (74)



TCCS-8 Primer for wave propagation 83

In many cases, this second-order term is neglected for nonlinear inverse problems. In
the following, the remaining term in the Hessian, i.e., H, = Re[J TJ], is referred to as
the approximate Hessian. It is the auto-correlation of the derivative wavefield. Eq.

becomes
Am = ~H 'VE,, = —H, 'Re[J'Ap]. (75)

The method which solves equation when only H, is estimated is referred to
as the Gauss-Newton method. To guarantee th stability of the algorithm (avoiding
the singularity), we can use H = H, + nl, leading to

Am = —H 'VE,, = —(H, + 1) 'Re [JTAp]. (76)

Alternatively, the inverse of the Hessian in Eq. can be replaced by H = H, = ul,
leading to the gradient or steepest-descent method:

Am = —p'VE, = —aVFE, = —oRe [JTAp] ca=ph (77)

At the k-th iteration, the misfit function can be presented using the 2nd-order
Taylor-Lagrange expansion

E(myy) = E(mp—o,VE(my)) = E(myg)—o,(VE(my), VE(mk)>+%OziVE(mk)THkVE(mk).

(78)
Setting %’;“) = 0 gives
" T VEm,)HVEm,)  (JVE(my), J.VE(my))
Conjugate gradient (CG) implementation
The gradient-like method can be summarized as
mg, 1 = 1My + Ckkdk. (80)

The conjugate gradient (CG) algorithm decreases the misfit function along the con-
jugate gradient direction:

—VE =
—VE(mk) + ﬁkdk_l, k Z 1



84 Pengliang Yang TCCS-8

There are many ways to compute [y:

( us _ (VE(my), VE(m;) — VE(my_,))
F T T {dy1, VE(my) — VE(my_1))
FR _ <VE(mk), VE(mk)>
© (VE(my), VE(myy))

PRP _ (VE(my), VE(my) — VE(my,_4))

G (VE(my_,), VE(my_,)) (82)
cp _ _(VE(my), VE(m,))
k <dk_1, VE(mk_l))
DY _ (VE(my), VE(my))

k - <dk_1, VE(mk) — VE(mk_1)>

\

To achieve best convergence rate, in practice we suggest to use a hybrid scheme
combing Hestenes-Stiefel and Dai-Yuan:

B = max(0, min(87°, BPY)). (83)

Iterating with Eq. needs to find an appropriate «y. Here we provide two
approaches to calculate a,.

e Approach 1: Currently, the objective function is
1
E(myy,) = E(my, + opdy) = E(my) + a,(VE(my), dy,) + §aZdLdek. (84)

Setting %’;“) = 0 gives

(dy, VE(my)) Hy=Ho=313;  (di, VE(my))
A — — T = — . (85)
d, H.d; (Jrdy, Jrdy)

e Approach 2: Recall that

om

f(my, + apdy) = £(my,) + di + O(||de|[2) = f(my,) + T xdy + O(|[di]|2). (86)

Using the 1st-order approximation, we have

1
E(myy) = §Hf<mk + agdy) — Poysl|?

1 1
~ §||f(mk:) + apdidy — Posl|” = §||f(mk:> — Pops + @ Jpdy]]? (87)

1
= E(m) + Oék<.]kdk, f(mk) — pobs> + 5&%<Jkdk, Jkdk>

Setting %’;“) = 0 gives

<Jkdk7 Pobs — f(mk»

(Tedy, Irdy) (88)

. —



TCCS-8 Primer for wave propagation 85

In fact, Eq. can also be obtained from Eq. in terms of Eq. : VEnL =
JTAp.

In terms of Eq. , the term Jxdy is computed conventionally using a 1st-order-
accurate finite difference approximation of the partial derivative of f:

f(mk + Edk) — f(rnk)

Jid, = (89)
€
with a small parameter €. In practice, we chose an e such that
max(eldy]) < 2D (90)
100
Fréchet derivative
Recall that the basic acoustic wave equation can be specified as
1 9%p(x, t;x,
PCEX) G tix) = ol £ o). (91)

v2(x) ot?
where fq(x,t;x5) = f(t')0(x — x4)0(t — t'). The Green’s function I'(x,t;X,t") is
defined by

1 0°T(x,t; %, 1)

2o o VLG tixet) = a6 —x)i(t —t). (92)

Thus the integral representation of the solution can be given by

p(Xp, X)) = / dx/dtT(xT,t;x, ) f(x, ;%)
v
= / dx/dt'F(xr,t —t';%x,0) f(x,t';x,)(Causility of Green’s function)
v
= / dxT'(x,, t;x,0) * f(x,t;Xs)
v
(93)

where x denotes the convolution operator.

A perturbation v(x) — v(x) + Av(x) will produce a field p(x, t; x;) + Ap(X, t; Xs)
defined by

L PO tx) AP EX] o
(U(X)—I—A’L)(X))2 Ot2 \Y [P( 7t7 5)+Ap( >t7 s)] fs( 7(2;4)5)
Note that

1 1 B 2Av(x) —{—O(A%(x)) (95)

(v(x) +Mv(x)?  v*(x)  vi(x)



86 Pengliang Yang TCCS-8

Eq. subtracts Eq. , yielding

1 0?Ap(x,t;x,) O?[p(x,t;x5) + Ap(x, t;x,)] 2Av(x)

—V2A t:x,) = 96
v2(x) ot? VAP, £x,) ot? v3(x) (96)
Using the Born approximation, Eq. becomes
1 0*Ap(x,t;xs) 9 9?p(x, t;x,) 2Av(x)
U As) A i ) = 3 Uy s
v?(x) ot? VIAp(x, i x,) ot? v3(x) (97)
Again, based on integral representation, we obtain
0*p(x,t;x,) 2Av(x)
Ap(x,,t;xs) = /vdxF(xT,t;x, 0) * D ) (98)

Gradient computation

According to the previous section, it follows that

apcal o . .. . 2 . . 82p(x,t;xs) 2
0,(x) _/VdXF(X“t’X’0>*p(x’t’xs>vs(x) —/VdXF<XT,f},X,O)* 5 )
(99)

The convolution guarantees

/ dtlg(t) = F(1)]h(t) = / At f(£)[g(~t) * h(t)]. (100)

Then, Eq. @ ) becomes

e Opea
am ZZ/dtR |:( P 'l) Ap:| (Ap:pcal_pobs)

r=1 s=1
ng mns t 2 *
max O*p(x,t;x) 2
— ZZ/ dtRe ( dxT'(x,, t;x,0) * 5 ) Ap(x,, t;Xs)
r=1 s=1
ng ns t *
max X t X 2
= dtRe ( Peat( o) ) (/ dxI'(x,, —t;x,0) * Ap(xr,t;xs))]
» or we) U
ng ns t *
_ e Pcal X7t7XS 2 . .
= ; ;/0 dtRe ( BTE v3(x)> (/V dxI'(x,, 0;x, t) * Ap(X,, t; xs))]
ng ns t *
e 8 pcal(X7 t7 Xs) 2
- dtR res(Xr, 15 Xs
SoY [ ame | (TR B ) bt

(101)

where p,s(X, t; X,) is a time-reversal wavefield produced using the residual Ap(x,., t; xy)
as the source. It follows from reciprocity theorem

Dres(X, 1;X5) = / dxI'(x,, 0;x,t) * Ap(x,, t;Xs) = / dxI'(x, 0;x,, t) * Ap(X,, t; Xs).
% %
(102)



TCCS-8 Primer for wave propagation 87

satisfying
1 0pres(x, ;%)
v2(x) ot?

It is noteworthy that an input f and the system impulse response function ¢ are
exchangeable in convolution. That is to say, we can use the system impulse response
function g as the input, the input f as the impulse response function, leading to the
same output. In the seismic modeling and acquisition process, the same seismogram
can be obtained when we shot at the receiver position x,, when recording the seismic
data at the position x.

— VQpTes(x, txs) = Ap(x,, t;Xs). (103)

Numerical results

I use the Marmousi model for the benchmark test, as shown in the top panel of
Figure[d FWI tacitly requires a good starting model incorporated with low frequency
information. Therefore, we use a starting model (bottom panel of Figure |4]) obtained
by smoothing the original model 20 times with a 5x5 window.

The FWI is carried out for 300 iterations. We record all the updated velocity to
make sure the velocity refinement is going on during the iterative procedure. The
updated velocity model at the iteration 1, 20, 50, 100, 180 and 300 are displyed in
Figure[o] Figure[7]presents the decreasing misfit function in iterations. As can be seen
from the Figures [ and [7], the velocity model changes significantly at the early stage.
Later iterations in FWI make some improvement on small details for the velocity
model.

ACKNOWLEDGEMENT

I would like to thank to Sergey Fomel for the encouragement and the correction of
this work, which leads to significant improvement of the tutorial. Special thanks to
Baoli Wang, who helps me a lot in GPU programming.

REFERENCES

Baysal, E., D. D. Kosloff, and J. W. Sherwood, 1983, Reverse time migration: Geo-
physics, 48, 1514-1524.

Berenger, J.-P., 1994, A perfectly matched layer for the absorption of electromagnetic
waves: Journal of computational physics, 114, 185-200.

Biondi, B., 2006, 3d seismic imaging: Society of Exploration Geophysicists.

Bjorck, A., 1996, Numerical methods for least squares problems: Society for Industrial
and Applied Mathematics.

Carcione, J. M., G. C. Herman, and A. Ten Kroode, 2002, Seismic modeling: Geo-
physics, 67, 1304-1325.



88 Pengliang Yang

Lateral (m)
0 1000 2000 3000 4000 5000 6000 7000

1000

E
<
+
o,
o = -
n o E - B _——
= : ;
o . =
N 5
=
o F >
= .
g Marmousi model
Lateral (m)
0 1000 2000 3000 4000 5000 6000 7000
o
o
o
~S
E
<
+
o,
()
[}

2000

3000

Smoothed Marmousi model

8000

TCCS-8

8000 9000

5000

4000
V (m/s)

3000

2000

9000

2000 2500 3000 3500 4000 4500
V (m/s)

Figure 15: Top: The original Marmousi is downsampled with a factor of 3 along depth
and lateral direction. The shots are generated according to the subsampled Marmousi
model. Bottom: The starting model of FWI for Marmousi model, which is obtained by

smoothing the original model 20 times with a 5x5 window.

primer/marmfwi/ marm




from rsf.proj import *

Fetch('marmvel.hh','marm')

Flow('vel','marmvel.hh',
	'''
	dd form=native | window j1=3 j2=3 | 
     	put label1=Depth  unit1=m label2=Lateral unit2=m
	''')
Plot('vel',
	'''
	grey color=j mean=y title="Marmousi model" scalebar=y bartype=v barlabel="V" 
	barunit="m/s" screenratio=0.45 
	''')

Flow('shots','vel',
	'''
	sfgenshots csdgather=n fm=10 amp=1 dt=0.0015 ns=21 ng=767 nt=2800
	sxbeg=4 szbeg=2 jsx=37 jsz=0 gxbeg=0 gzbeg=3 jgx=1 jgz=0
	''')
Plot('shots','grey color=g title=shot label2= unit2=',view=1)


Plot('shot4','shots','window n3=1 f3=4| grey color=g title=shot4 label2=Lateral unit2=m')
Plot('shot11','shots','window n3=1 f3=11| grey color=g title=shot11 label2=Lateral unit2=m')
Plot('shot17','shots','window n3=1 f3=17| grey color=g title=shot17 label2=Lateral unit2=m')
Result('shotsnap','shot4 shot11 shot17','SideBySideAniso')

# smoothed velocity model   
Flow('smvel','vel','smooth repeat=10 rect1=10 rect2=20')
Plot('smvel',
     '''
     grey title="Smoothed Marmousi model" wantitle=y allpos=y color=j
     pclip=100 scalebar=y bartype=v barlabel="V" barunit="m/s"
	screenratio=0.45 
     ''' )

Result('marm','vel smvel','TwoRows')

# use the over-smoothed model as initial model for FWI
Flow('vsnaps grads objs illums','smvel shots',
	'''
	sfgpufwi shots=${SOURCES[1]} grads=${TARGETS[1]} objs=${TARGETS[2]}
	illums=${TARGETS[3]} niter=300
	''')
Result('vsnaps',
	'''
	grey title="Updated velocity" allpos=y color=j pclip=100 
	scalebar=y bartype=v barlabel="V" barunit="m/s" 
	''')
Plot('vsnap1','vsnaps', 
	'''
	window n3=1|grey title="Updated velocity, iter=1" allpos=y color=j pclip=100 
	scalebar=y bartype=v barlabel="V" barunit="m/s" 
	''')
Plot('vsnap20','vsnaps', 
	'''
	window n3=1 f3=19|grey title="Updated velocity, iter=20" allpos=y color=j pclip=100 
	scalebar=y bartype=v barlabel="V" barunit="m/s" 
	''')
Plot('vsnap50','vsnaps', 
	'''
	window n3=1 f3=49|grey title="Updated velocity, iter=50" allpos=y color=j pclip=100 
	scalebar=y bartype=v barlabel="V" barunit="m/s" 
	''')

Plot('vsnap100','vsnaps', 
	'''
	window n3=1 f3=99|grey title="Updated velocity, iter=100" allpos=y color=j pclip=100 
	scalebar=y bartype=v barlabel="V" barunit="m/s" 
	''')
Plot('vsnap180','vsnaps', 
	'''
	window n3=1 f3=179|grey title="Updated velocity, iter=180" allpos=y color=j pclip=100 
	scalebar=y bartype=v barlabel="V" barunit="m/s" 
	''')
Plot('vsnap300','vsnaps', 
	'''
	window n3=1 f3=299|grey title="Updated velocity, iter=300" allpos=y color=j pclip=100 
	scalebar=y bartype=v barlabel="V" barunit="m/s" 
	''')

Result('vsnap','vsnap1 vsnap20 vsnap50 vsnap100 vsnap180 vsnap300','TwoRows')

Result('grads','grey title="Updated gradient" scalebar=y color=j ')
Result('illums','grey title="illumination" scalebar=y color=j')

Result('objs',
	'''
	sfput n2=1 label1=Iteration unit1= unit2= label2= |
	graph title="Misfit function" dash=0 plotfat=5  grid=y yreverse=n
	''')


End()



TCCS-8 Primer for wave propagation 89

Lateral (m) Lateral (m) Lateral (m)

[ 2000 4000 6000 8000 o 2000 4000 6000 8000 0 2000 4000 6000 8000

ol I I I I N I I I I o I I I I

Time (sec)
2

Time (sec)
2

shot11 shot17

Figure 16: 21 shots were deployed in the FWI. Here, shot 4, 11 and 17 are shown
from left to right |primer/marmfwi/ shotsnap

Distance (m) Distance (m) Distance (m)
0 2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000
o v ”
2
2
¥ )
o
8 8 E
g 3 g N g N
S ° S S
~2 S ~2 ~3
E 8@ & =@ E Q
~ S RS
g SE 4 QE g 8E
& B 5 > g >
a a a
g =)
& =] g
° & 3
S @
]
o o o
S S S
=3 . =3 . =3 .
& Updated velocity » Updated velocity « Updated velocity
Distance (m) Distance (m) Distance (m)
0 2000 4000 6000 8000 2000 4000 6000 2000 4000 6000
o R — e 2 S g °
3 3
i I} =1
©
g s
o * 8 2
S
2 —~ ¥ - ¥
E” oF g Q g q
= IS =~ =R =~ o
E B = SE g S8
B ~ B, @~ A g
o > © > @ =
ag A a
S o o o
Q S S S
] B ]
g g
8 8 8 ] 8 S
=3 . ] 8 - = S = - 2
@ Updated velocity © Updated velocity @ Updated velocity

Figure 17: The updated velocity model at the iteration 1, 20, 50, 100, 180 and 300.
primer/marmfwi/ vsnap




90 Pengliang Yang TCCS-8

Misfit function

@

o

©

o

=

o \

. \\‘

é T ——
0 50 100 150 200 250 300

[teration

Figure 18: The misfit function decreases with the iterations. ’primer /marmfwi/ objs‘

Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef, 1985, A nonreflecting boundary
condition for discrete acoustic and elastic wave equations: Geophysics, 50, 705-708.

Claerbout, J., 1986, Imaging the earth’s interior: Geophysical Journal of the Royal
Astronomical Society, 86, 217-217.

Claerbout, J. F., 1971, Toward a unified theory of reflector mapping: Geophysics, 36,
467-481.

Clapp, R. G., 2009, Reverse time migration with random boundaries: 79th Annual
International Meeting, SEG Expanded Abstracts, 2809-2813.

Clapp, R. G., H. Fu, and O. Lindtjorn, 2010, Selecting the right hardware for reverse
time migration: The Leading Edge, 29, 48-58.

Clayton, R., and B. Engquist, 1977, Absorbing boundary conditions for acoustic and
elastic wave equations: Bulletin of the Seismological Society of America, 67, 1529—
1540.

Collino, F., and C. Tsogka, 2001, Application of the perfectly matched absorbing layer
model to the linear elastodynamic problem in anisotropic heterogeneous media:
Geophysics, 66, 294-307.

DiMarco, S., R. Reid, A. Jochens, W. Nowlin Jr, M. Howard, et al., 2001, Gen-
eral characteristics of currents in the deepwater gulf of mexico: Presented at the
Offshore Technology Conference, Offshore Technology Conference.

Dussaud, E., W. W. Symes, P. Williamson, L. Lemaistre, P. Singer, B. Denel, and A.
Cherrett, 2008, Computational strategies for reverse-time migration: SEG Annual
meeting.

Engquist, B., and A. Majda, 1977, Absorbing boundary conditions for numerical



TCCS-8 Primer for wave propagation 91

simulation of waves: Proceedings of the National Academy of Sciences, 74, 1765~
1766.

Guitton, A., B. Kaelin, and B. Biondi, 2006, Least-squares attenuation of reverse-
time-migration artifacts: Geophysics, 72, S19-S23.

Guitton, A., A. Valenciano, D. Bevc, and J. Claerbout, 2007, Smoothing imaging
condition for shot-profile migration: Geophysics, 72, S149-S154.

Komatitsch, D., and R. Martin, 2007, An unsplit convolutional perfectly matched
layer improved at grazing incidence for the seismic wave equation: Geophysics, 72,
SM155-SM167.

Liu, G., Y. Liu, L. Ren, and X. Meng, 2013a, 3d seismic reverse time migration on
gpgpu: Computers & Geosciences, 59, 17 — 23.

Liu, H., R. Ding, L. Liu, and H. Liu, 2013b, Wavefield reconstruction methods for
reverse time migration: Journal of Geophysics and Engineering, 10, 015004.

McMechan, G., 1983, Migration by extrapolation of time-dependent boundary values:
Geophysical Prospecting, 31, 413-420.

Pica, A., J. Diet, and A. Tarantola, 1990, Nonlinear inversion of seismic reflection
data in a laterally invariant medium: Geophysics, 55, 284-292.

Pratt, G., C. Shin, et al., 1998, Gauss—newton and full newton methods in frequency—
space seismic waveform inversion: Geophysical Journal International, 133, 341—
362.

Roden, J. A., and S. D. Gedney, 2000, Convolutional pml (cpml): An efficient fdtd im-
plementation of the cfs-pml for arbitrary media: Microwave and optical technology
letters, 27, 334-338.

Symes, W. W., 2007, Reverse time migration with optimal checkpointing: Geophysics,
72, SM213-SM221.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation:
Geophysics, 49, 1259-1266.

——, 1986, A strategy for nonlinear elastic inversion of seismic reflection data: Geo-
physics, 51, 1893-1903.

Versteeg, R., 1994, The marmousi experience: Velocity model determination on a
synthetic complex data set: The Leading Edge, 13, 927-936.

Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration
geophysics: Geophysics, 74, WCC1-WCC26.

Yang, P., J. Gao, and B. Wang, 2014, {RTM} using effective boundary saving: A
staggered grid {GPU} implementation: Computers & Geosciences.

Yoon, K., and K. J. Marfurt, 2006, Reverse-time migration using the poynting vector:
Exploration Geophysics, 37, 102-107.

Yoon, K., C. Shin, S. Suh, L. R. Lines, and S. Hong, 2003, 3d reverse-time migration
using the acoustic wave equation: An experience with the seg/eage data set: The
Leading Edge, 22, 38-41.



92

Pengliang Yang

TCCS-8



National Engineering Laboratory for Offshore Oil Ezxploration, XJTU, August 31, 2021

Fourier pseudo spectral method for attenuative
simulation with fractional Laplacian

Pengliang Yang]

ABSTRACT

This tutorial is devoted to pseudo-spectral method (PSM) by reorganizing the
course material from Prof. Heiner Igel and a paper by J.M. Carcione, to illustrate
how to implement viscoacoustic wave simulation based on fractional Laplacian
operator.

WHAT IS A PSEUDO-SPECTRAL METHOD?

Spectral solutions to time-dependent PDEs are formulated in the frequency-wavenumber
domain and solutions are obtained in terms of spectra (e.g. seismograms). This tech-
nique is particularly interesting for geometries where partial solutions in the w — k
domain can be obtained analytically (e.g. for layered models).

In the pseudo-spectral approach - in a finite-difference like manner - the PDEs
are solved pointwise in physical space (x —t). However, the space derivatives are cal-
culated using orthogonal functions (e.g. Fourier Integrals, Chebyshev polynomials).
They are either evaluated using matrix-matrix multiplications, fast Fourier transform
(FFT), or convolutions.

Let us start with the 1-D acoustic wave equation.
1 1
_Qattp = pa:v _8acp + f (1>
v p

Omitting the source term, we may discretize the wave equation using standard cen-
tered finite difference for time stepping as

n+1 n n—1
piTt =2p" +p 1
=0, | -0, 2
pcAt? (p p) 2
where we use the notation p(nAt) := p™. Thus, we have the following evolution
scheme .
prh=2p" = p" T P AL, (anp) (3)

where the space derivatives will be calculated using the Fourier transform.

*e-mail: ypl.2100@gmail.com

93



94 Pengliang Yang TCCS-8

COMPUTING DERIVATIVES USING FOURIER
TRANSFORM

The Fourier transform of a function f(x) and the inverse are define respectively

ﬂszmz/jwfmm (4)

and

fla) = 1) = 5 [ Flwiends )

where f is the Fourier transform of f. In spatial dimension, w corresponds to the
wavenumber k. Therefore we have

_ 1 ¢ _ikgx _ 1 . ¢ ikgx
O.f =0, (_27r /fe dx) b /zkxfe dx (6)
and

1 [, 1 o
Oraf = Ors (% / fem’”“"dx) =5 / (ik,)? fe™="da (7)

The term 0, (%c%p) will be calculated by the following precedure:

F ~
p— p

ey kP

£ Oup = F ik,

L L ik, (8)

= FILF[ik,p)]

% ik, F[LF ik, p)]

T F ik FILF ik

Let us conduct a 2-D numerical simulation of acoustic wave equation with constant
density. The equation is then

attp = 02(8501: + azz)p (9)

Based upon Fourier transform for spatial axis, we know the right hand side of the
above equation corresponds to
—(ky +k2)p (10)

Thus, we have the following time evolution

prt = 2p" — p" T+ AP F T (K2 + K2 Fp"] (11)



TCCS-8 Primer for wave propagation 95

FRACTIONAL LAPLACIAN
According to |Carcione (2010), the uniform-density pressure formulation is
Pp=wy PP+ 0% +5 (12)

where s is the body force per unit; the order g is 1 < < 2. When § — 2,
it introduces stronger attenuation. Regarding the fractional order of the Laplacian
operator, we may be able to update the wavefield by

pn+1 — 2pn _pnfl + At202F71[(_k§ _ kz)ﬁFpn] (13>

Another choice to perform fractional order wave simulation is
p(@p~'0] +0lp7'07) (14)
which implies the following wavefield extrapolation
Pt = 2p" — "t AR F (1P (kP + k¥ Fph (15)

with constant density p.

A snapshot using the code provided in the appendix is shown in Figure[I] in which
we use the sponge boundary condition.

x2 (m)
0 200 400 600 800 1000 1200

o

o
o
—~ O
E le]

ol Lo
o
o

Q ~

o

|

snapshot with fractional Laplacian

Figure 1: A snapshot of 2-D acoustic propagation using PSM method
’ fraclap/ps2d/ snapshot




from rsf.proj import *

Flow('vel',None,
     	'''
     	math output=1500 n1=301 n2=301 d1=4 d2=4
     	label1=x1 unit1=m label2=x2 unit2=m 
     	''')
Flow('Qp',None,
     	'''
     	math output=100 n1=301 n2=301 d1=4 d2=4
     	label1=x1 unit1=m label2=x2 unit2=m 
     	''')
Plot('vel','grey title=Velocity color=j scalebar=y')
Plot('Qp','grey title=Velocity color=j scalebar=y')
Result('model','vel Qp','SideBySideIso')


Flow('snapshot','vel Qp','sfps2d Qp=${SOURCES[1]} nb=30 nt=600 kt=500 dt=0.001')
Result('snapshot','grey title="snapshot with fractional Laplacian" color=j scalebar=y')

End()



96 Pengliang Yang TCCS-8

CONCLUSION

The Fourier method can be considered as the limit of the finite-difference method as
the length of the operator tends to the number of points along a particular dimension.
The space derivatives are calculated in the wavenumber domain by multiplication
of the spectrum with ¢k. The inverse Fourier transform results in an exact space
derivative up to the Nyquist frequency. The use of Fourier transform imposes some
constraints on the smoothness of the functions to be differentiated. Discontinuities
lead to Gibbs’ phenomenon. As the Fourier transform requires periodicity this tech-
nique is particular useful where the physical problems are periodical (e.g. angular
derivatives in cylindrical problems).

By introducing fractional order of the Laplacian operator, we are able to perform
wave simulation in attenuative medium. The computation of fractional Laplacian
can be easily carried out by using Fourier pseudo spectral method, which is computa-
tional accurate and efficient enough without any additional storage when considering
a constant QQ model.

ABSORBING BOUNDARY CONDITION

One of the easiest absorbing boundary condtion (ABC) is sponge (or referred to as
Gaussian taper) boundary condition proposed by |Cerjan et al.| (1985). The principle
is very simple: Attenuating the refections exponentially in the extended artificial
boundary (Figure area by multiplying a factor less d(u) than 1, ie., d(u) =
exp(—[a(nb — )]*),u = z, z(iAz or iAz) where nb is the thickness of the artificial
boundary on each side of the model. A usual choice is a = 0.015 for nb = 20 ~
30 absorbing layers. The sponge ABC can be easily applied to a wide range of
wave propagation problems, including some governing wave equations for complicated
medium.

REFERENCES

José M Carcione. A generalization of the fourier pseudospectral method. Geophysics,
75(6):A53-A56, 2010.

C. Cerjan, D. Kosloff, R. Kosloff, and M. Reshef. A nonreflecting boundary condition
for discrete acoustic and elastic wave equations. Geophysics, 50(4):2117-2131, 1985.



TCCS-8 Primer for wave propagation 97

d(z) #0
Bl B4

Figure A-1: A schematic diagram of extended artificial boundary area. A;A3A3A, is
the original model zone, which is extended to be By By B3 B4 with artificial boundary.
In the extended bounary area, the attenuation coeffcient d(u) # 0; In the model zone
A1A2A3A4, d(u) = 0, u=2ax,z.



98

Pengliang Yang

TCCS-8



National Engineering Laboratory for Offshore Oil Ezxploration, XJTU, August 31, 2021

From modeling to full waveform inversion: A
hands-on tour using Madagascar

Pengliang Yang
ISTerre - Univ. Grenoble Alpes
E-mail: ypl.2100@gmail. com[]

ABSTRACT

This tutorial is devoted to Madagascar school 2016 Zurich. In this tutorial, there
are two aspects we would like to explore:

e Madagascar functionality, which is the tool. We may consider Madagascar
to facilitate our research, from the numerical test to publication.

e Scientific aspects, which are the key things we care. Even though we are
playing a game with simple exercise, we have to think about the scientific
enhancement /improvement to polish the techniques used in modeling and
inversion applications.

INTRODUCTION

As a brief introduction, I want to emphasize several points from my own understand-
ing:

e Do you really need Madagascar? Yes because you will benefit a lot from it. Of
course no if you are able to manage things in your own way, even better than
Madagascar.

e Assuming we need Madagascar hereafter. In what aspects we can benefit from
it?

e [s it a responsibility to contribute your papers, in particular your codes? Defi-
nitely no, especially when your research is sponsored by others while a permis-
sion public release is not accessible. You may want to be selfish: “I only want
to use the codes from others instead of sharing mine with the community”. No
objection: Some people are doing things like that.

e Keep in mind Madagascar is not the goal, it is just a tool to share your research
progress with others. If you are ready to be open, why not a contributor?

*e-mail: ypl.2100@gmail.com

99



100 Pengliang Yang TCCS-8

PRELIMINARY

In this section, I provide some fundamental gadgets to help the beginners run Mada-
gascar with ease.

Reproduce numerical examples and papers using SConstruct

Processing workflow:

e Fetch(data_file,dir,ftp_server_info): download data_file from a specific directory
dir of an FTP server

e Flow(targets,sources,commands): generate target[s| from source[s] using com-
mand(s]

e Plot(intermediate_plot[,source],plot_command): generate intermediate_plot in
the working directory

e Result(plot,intermediate_plots,combination) generate a final plot in Fig folder
of the working directory

e End(): collect default targets

Run scons for your computation

scons run an SConstruct to generate data
scons view view the results from an SConstruct
scons -c clean the local directory, delete all target files

pscons parallel execution of an SConstruct

Paper Sconstruct imports Python packages for processing TeX files:

from rsf.tex import x
End(name, lclass ,options , use)

e name - name of the root tex file to build, paper.tex.

lclass - name of the LaTeX class file to use.

options - document options for LaTeX class file.

e use - names of LaTeX packages to import during compilation.




TCCS-8 Primer for wave propagation 101

To generate your paper including numerical examples:

e sftour scons lock: lock the results from an SConstruct
e scons read/paper.read: look at the generated paper in pdf

e scons -c remove all intermediate files

Some of the most useful commands

Plotting the figures

sfgraph create line plots, or scatter plots
sfgrey create raster plots or 2D image plots
sfgrey3 create 3D image plots of panels (or slices) of a 3D cube

sfwiggle plot data with wiggly traces
Look up data attributes and data processing:

sfin check the layout of the data, number of points in each dimension, sampling
intervals in each axis, labels, units, ...

sfattr check statistical properties: covariable, rms, mean, minimum and maximum
etc

sfwindow window or select part of data
sfadd add two dataset with scaling factors
sfmath mathematical operations for the data: log, sin, tan, exp, ...

sfsmooth smoothing the data using triangular window (repeating many time to
approximate Gaussian)

Image format: Vplot

e suffix ".vpl’, vectorized image—scaling without loss of quality
e convert to be pdf/eps/png/jpeg/tiff/mpeg/. ..

e how: vpconvert format=pdf fig.vpl



N

© oo ~ (=] w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

102 Pengliang Yang TCCS-8

FORWARD MODELING

The wave equation we consider in this course material
L o 2
(50 —Vip=f (1)
Omitting the source, extrapolate your wavefield:

pkz—i-l — 2pkz _ pk—l + At2v2V2pk (2)
pliz][iz + 1] — 2pliz][iz] + pliz][iz — 1] p[ia: — 1][iz] — 2pliz][iz] + plix — 1][iz]
Az? Ax? )

The Clayton-Enquist absorbing boundary condition (ABC) (Clayton and En-
gquist), [1977)

Fp _19°p _vdp (4)
oxdt v o2 2022

left boundary :

The codes in every time step looks like

void step_forward (float *xp0, float sxpl, float xxp2,
float sxvv, float dtz, float dtx, int nz, int nx)

int ix,iz;

float vl1,v2,diffl ,diff2;

for (ix=0; ix < nx; ix++)

for (iz=0; iz < nz; iz++)

{

vi=vv[ix |[iz]|*dtz; vi=vlkvl;
v2=vv[ix |[iz|*dtx; v2=v2xv2;
diffl=diff2=-2. O*pl[ix][iz]'
diffl4+=(iz —1>= O)7p1 x][iz —1]:

9

0.0;
diffl4+=(iz+1l<nz)?pl[ix|[iz+1]:0.0;
diff24+=(ix —1>= O)7p1[1x—1][ 1:0.0;
diff2+=(ix+l<nx)?pl[ix+1][iz]:0.0;
difflx=vl;
diff2x=v2;

p2[ix|[iz]=2.0xpl[ix|[iz]—pO]ix|[iz]+diffl1+diff2;
}




26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

TCCS-8 Primer for wave propagation

iz=nz—1;

for (ix=1; ix < nx—1; ix++) {
vi=vv|ix|[iz|xdtz;
v2=vv|ix |[iz |xdtx;
diffl=—(pl[ix][iz]—pl]

(pO[ix][iz]—pO]

diff2=pl[ix —1][iz]—2.0
difflsx=vl;
diff2«=0.5%xv2%xv2;

ix |
ix|][iz —1]);
«pl[ix|[iz]+pl[ix+1][iz];

p2[ix|[iz]=2.0xpl[ix|[iz]—-p0[ix|[iz]|+diffl1+diff2;

ix=0;

for (iz=1; iz <nz—1; iz++){
vi=vv[ix|[iz]*dtz;
v2=vv|ix|[iz|xdtx;
difflzpl[ix][iz—l]—Q.O*pl[iX][iZ]—l—pl[iXHiZ—I—l];
diff2=(pl[ix+1][iz|—pl[ix]]iz])—

(pO[ix+1][iz]-p0[ix][iz]);

diffl*=0.5%xvlxvl;

diff2x=v2;

p2|ix|[iz]=2.0%pl[ix]|[iz]—pO0[ix |[iz]+diffl+diff2;
¥
ix=nx—1;

for (iz=1; iz <nz—1; iz++){
vi=vv|ix|[iz|xdtz;
v2=vv|ix |[iz |xdtx;
diffl=pl[ix]|[iz —1]—2.0xpl[ix][iz]|+pl[ix]|[iz+1];
ditf2=—(p1 [ ix | [i2]-p1 [ix 1] [iz])+

103




71

72

73

74

75

76

104

Pengliang Yang TCCS-8

(pO[ix][iz]-p0[ix —1][iz]);
diffl+*=0.5%xvlxvl;
diff2+=v2;
p2|ix|[iz]=2.0%pl[ix]|[iz]—pO0[ix |[iz]+diffl1+diff2;

Write your own code and run it as a test

You have to

1. create a user directory in /RSFSRC/user/dirname, where dirname is the direc-
tory name, for example, 'pyang’.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

. copy a SConstruct from other existing users, and use it as a template to cre-

ate your own things. For example, take /RSFSRC/user/psava/SConstruct.
Assume you are going to do C programming to generate a target executable
sfmodeling2d. You need to empty all other code list while add a name in C
code list:

import os, sys

try:
import bldutil
glob_build = True
srcroot = .. /.."
Import (’env bindir libdir pkgdir’)
env = env. Clone ()
except:

glob_build = False

srcroot = os.environ.get(’RSFSRC’, "../.. ")
sys.path.append(os.path.join (srcroot , framework’))
import bldutil

env = bldutil.Debug()

bindir = libdir = pkgdir = None

SConscript (os.path.join (srcroot , ’api/c/SConstruct’))

targets = bldutil. UserSconsTargets ()

targets.c =

M)

modeling2d

P




TCCS-8 Primer for wave propagation 105

25 targets.build_all (env, glob_build, srcroot ,
26 bindir , libdir , pkgdir)

3. Use text editor (emacs, gedit, ...) to create a file Mmodeling2d.c (which will
generate the target sfmodeling2d, M will be automatically replaced by sf). In
Mmodeling2d.c, start your codes by including the RSF header file: #include
<rsf.h>, which defines many useful interfaces/subroutines for the convenience
of data I/O (including parameters and files)

sf_input () /sf_output ()
sf_histint()/sf_histfloat()
sf_getint()/sf_getfloat()

and memory allocation for the variables

sf_intalloc()/sf_floatalloc()
sf_intalloc2()/sf_floatalloc2()

which will be used frequently when coding with Madagascar.

4. specify your input and output files, and initialize Madagascar:

1 | sf_file vinit, shots;
o [sf_init (arge ,argv);

3 | vinit=sf_input (7in”);
4 | shots=sf_output ("out”);

Here the input file vinit is the velocity model, while the output shots is a shot
gather (or many shots) collected at many receivers for different sources.

5. read the parameters from the input file using the interfaces Madagascar pre-
pared: sf hist*x(),sf_get*()

o [if (!'sf_histint (vinit ,”nl” &nz)) sf_error(”no nl”);

s [1f (!'sf_histint (vinit ,”n2” &nx)) sf_error(”no n2”);

o | if (!'sf_histfloat (vinit ,”d1”,&dz)) sf_error(”no dl17);
s [1f (!'sf_histfloat (vinit ,”d2” ,&dx)) sf_error(”no d27);
6

7 [if (I'sf_getfloat ("fm”,&fm)) fm=10;

8

o [1f (!sf_getfloat (”dt”,&dt)) sf_error("no dt”);




106

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

10
11
12
13
14
15

16

Pengliang Yang TCCS-8

i

sf_getint ("nt”,&nt)) sf_error ("no nt”);

i

sf_getint ("ns”,&ns)) sf_error ("no ns”);

i

sf_getint ("ng”,&ng)) sf_error ("no ng”);

i

sf_getint (" jsx”,&jsx)) sf_error ("no jsx”);

it

sf_getint (" jsz”,&jsz)) jsz=0;

it

sfogetint ("jgx”,&jgx))  jgx=1;

if (!'sf_getint (”jgz”,&jgz)) jgz =0;

if

—~

I'sf_getint ("sxbeg” ,&sxbeg)) sf_error ("no sxbeg”);

if

—~

I'sf_getint ("szbeg” ,&szbeg)) sf_error ("no szbeg”);

if

—~

I'sf_getint (" gxbeg” ,&gxbeg)) sf_error ("no gxbeg”);

if

—~

I'sf_getint (" gzbeg” ,&gzbeg)) sf_error ("no gzbeg”);

if (!sf_getbool(”csdgather” &csdgather)) csdgather=false

specify the parameters for the output file using the interfaces Madagascar pre-
pared: sf _putx*()

sf_putint (shots,”nl” /nt);

sf_putint (shots ,”n2” ng);

sf_putint (shots ,”n3” ;ns);
sf_putfloat (shots ,”d1” ,dt);
sf_putfloat (shots ,”d2” |jgx*dx);
sf_putfloat (shots ,”0l1” ,0);
sf_putstring (shots ,”labell” " Time” );
sf_putstring (shots ,”label2” " Lateral”);
sf_putstring (shots ,”label3” ”Shot” );
sf_putstring (shots ,”unitl” ,”sec”);
sf_putstring (shots ,” unit2” ,”m” );
sf_putfloat (shots ,”amp” ;amp);
sf_putfloat (shots ,”fm” ,fm);
sf_putint (shots,”ng” ,ng);

sf_putint (shots ,”szbeg” ,szbeg);




TCCS-8 Primer for wave propagation 107

17

18

19

20

21

22

23

24

10

11

10

11

sf_putint (shots ,”sxbeg” ;sxbeg);
sf_putint (shots ,” gzbeg” ,gzbeg);
sf_putint (shots ,” gxbeg” ,gxbeg);

sf_putint (shots ,”jsx” ,jsx );
sf_putint (shots ,”jgx” ,jgx);
sf_putint (shots ,”jgz” ,jgz );

(
(
(
(
sf_putint (shots ,”jsz” ,jsz);
(
(
(

sf_putint (shots ,” csdgather” jcsdgather?1:0);

allocate memory for the arries, format: sf_ floatalloc2(nl,n2)

wlt=(float*)malloc(nt*xsizecof (float));
bndr=(float x)malloc(nt*(2xnz+nx)xsizeof (float ));
dobs=(float *)malloc(ng*ntxsizeof (float ));
trans=(float *)malloc (ng*ntxsizeof (float));
vv=sf_floatalloc2 (nz, nx);
pO=sf_floatalloc2 (nz, nx);
pl=sf_floatalloc2 (nz, nx);
p2=sf_floatalloc2 (nz, nx);

sxz=(int*)malloc (ns*sizeof (int));

gxz=(int *)malloc (ngxsizeof (int));

do your own computation (forward simulation) as usual. The whole time step-
ping looks like

memset (p0[0] ,0 ,nz*nxxsizeof (float ));
memset (pl[0],0 ,nzsxnxxsizeof (float));
memset (p2[0] ,0 ,nz*nxxsizeof (float));

for (it=0; it<nt; it++)

{
add_source (pl, &wlt|[it], &sxz[is], 1, nz, true);
step_forward (p0, pl, p2, vv, dtz, dtx, nz, nx);
ptr=p0; pO=pl; pl=p2; p2=ptr;
record_seis(&dobs[itxng]|, gxz, p0, ng, nz);

. free the variables

(sxz);
free (gxz);
free (bndr);

( )

free(dobs

I




108

10

11

10.

Pengliang Yang TCCS-8

free (trans);

free (wlt);

free (xvv); free(vv);
free (xp0); free(p0);
free(xpl); free(pl);
free (xp2); free(p2);

Finally, you end up with a complete code /RSFSRC /user/pyang/Mmodeling2d.c.
You can go into directory RSFSRC, compile and install the target executable
sfmodeling?2d:

cd $RSFSRC
scons install

If there exists any error in your code, you will get the reporting message in the
terminal.

A 2-D Modeling experiment using SConstruct

1

Invoke RSF module to create a experiment environment.

from rsf.proj import x

End ()

Almost every SConstruct for numerical test has to start with from rsf.proj
import * and ends with End().

. In between, add several lines to create a very simple velocity model including

3 layers using Flow(target,source,command). The command here is sfmath.
One may type the command name ’sfmath’ to look up the manual in the ter-
minal.

. Performing 2-D forward simulation with 1 point source (a Ricker wavelet) by

specifying the parameters for the command sfmodeling2d. Again, one may
type the command name to look up the manual in the terminal if you cannot
keep everything in mind.

Polish your resulting figures. Help yourself by self-documentation of the com-
mand, type the command name sfgrey or man sfgrey E] in the terminal. For
example, try color style: color=g bartype=h

The final SConstruct looks like

TKeep in mind the initial 'sf’ has to be included when looking for the functionality of the
command, although it can be omitted in SConstruct.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

TCCS-8 Primer for wave propagation 109

from rsf.proj import =

Flow (’vel0’  None,
math output=1.6 n1=50 n2=200 d1=0.005 d2=0.005
labell=x1 unitl=km label2=x2 unit2=km

777)

Flow (’vell ’ None,
math output=1.8 n1=50 n2=200 d1=0.005 d2=0.005
labell=x1 unitl=km label2=x2 unit2=km

Y 77)
Flow( ’vel2’ None,

math output=2.0 n1=100 n2=200 d1=0.005 d2=0.005
labell=x1 unitl=km label2=x2 unit2=km

777)
Flow(’vel’ [ ’vel0’, vell’,’vel2’], ’cat axis=1 ${SOURCES[1:3]}

Result (’vel 7,
grey title="velocity model: 3 layers”
color=j scalebar=y bartype=v

777)

Flow(’shots’, vel ’,
modeling2d nt=1100 dt=0.001 ns=10 ng=200
sxbeg=5 szbeg=2 jsx=20 jsz=0
gxbeg=0 gzbeg=3 jgx=1 jgz=0
Y 77)

Result ( ’shots 7,
byte allpos=n gainpanel=all |
grey3d flat=n framel=300 frame2=100 frame3=h
labell=Time unitl=s
label2="Receiver no.” label3="Shot no.”
title="Shot records” pointl=0.8 point2=0.8

777)

Plot ( shots ', 'grey title=Shots’ K view=1)




45

46

47

48

110 Pengliang Yang TCCS-8

#use sfwindow to select 5—th shot and display it using sfgrey

End ()

We obtain the velocity model in Figure [I] and the shot gathers in Figure 2 To
have a look at the movie by looping over each shot gather, run scons.

x2 (km)
0 0.2 0.4 0.6 0.8
=)
N
)
©
)

velocity model: 3 layers

x1 (km
1.8 1.9

1.7

1.6

Figure 1: A 3-layer velocity model | modeling2fwi/modeling2d/ Vel‘

Shot records
0.5

Time (s)

0 0.2 0.4 0.6 0.8
Receiver no. (m)

Figure 2: Shot gather | modeling2fwi/modeling2d/ shots‘

Further exercises

How to:



from rsf.proj import *

Flow('vel0',None,
     	'''
     	math output=1.6 n1=50 n2=200 d1=0.005 d2=0.005
     	label1=x1 unit1=km label2=x2 unit2=km 
     	''')

Flow('vel1',None,
     	'''
     	math output=1.8 n1=50 n2=200 d1=0.005 d2=0.005
     	label1=x1 unit1=km label2=x2 unit2=km 
     	''')
Flow('vel2',None,
     	'''
     	math output=2.0 n1=100 n2=200 d1=0.005 d2=0.005
     	label1=x1 unit1=km label2=x2 unit2=km 
     	''')
Flow('vel',['vel0','vel1','vel2'], 'cat axis=1 ${SOURCES[1:3]}')

Result('vel',
       '''
       grey title="velocity model: 3 layers" 
       color=j scalebar=y bartype=v
       ''')

Flow('shots','vel',
	'''
	modeling2d nt=1100 dt=0.001 ns=10 ng=200	
	sxbeg=5 szbeg=2 jsx=20 jsz=0 
	gxbeg=0 gzbeg=3 jgx=1 jgz=0 	
	''')

Result('shots',
	'''
       byte allpos=n gainpanel=all |
       grey3 flat=n frame1=300 frame2=100 frame3=5 
       label1=Time unit1=s
       label2="Receiver no." label3="Shot no."
       title="Shot records" point1=0.8 point2=0.8
	''')

Plot('shots','grey title=Shots',view=1)

#use sfwindow to select 5-th shot and display it using sfgrey


End()



TCCS-8 Primer for wave propagation 111

1. higher accuracy in space — higher order FD stencil — Fourier pseudospectral
method (Carcione, 2010)), see the code /RSFSRC/user/pyang/Mps2d.c?

2. implement sponge/Gaussian taper boundary condition (Cerjan et al., [1985),
PML (Komatitsch and Martin|, 2007)? (Yang, 2014)

3. increase temporal discretization accuracy: leap-frog — Runge-Kutta scheme?

4. locate your source and receiver position at arbitrary position: Kaiser windowed
sinc interpolation (Hicks, 2002)

FULL WAVEFORM INVERSION

FWTI is a nonlinear iterative minimization process by matching the waveform between
the synthetic data and the observed seismograms (Tarantola, |1984; [Virieux and Op-
erto, [2009). In least-squares sense, the misfit functional of FWI reads

C(m) = S Rep — d|P, o)

where m is the model parameter (i.e. the velocity) in model space; R, is a restriction
operator mapping the wavefield onto the receiver locations; d := d(z,,t) is the ob-
served seismogram at receiver location x, while p := p(x,t) is the synthetic wavefield
whose adjoint wavefield p is given by
1
(50— V=3 = ~Ri(Rp-d ()
which indicates that the adjoint wave equation is exactly the same as the forward
wave equation except that the adjoint source is data residual backprojected into the
wavefield. In each iteration the model has to be updated following a Newton descent
direction Am*
m = mP 4y Amt, (7)

with a stepsize 7. Away from the sources (f = 0), the gradient can be computed by

VC = —33 / dtpo?p = 2 / dtpV3p (8)
ve Jr vJr

Reconstruct your source/incident wavefield backwards in time

As one can see from above, the computation of FWI gradient requires simultaneously
accessing the source/incident wavefield and the adjoint wavefield at each time step.
To achieve this goal, we may store the absorbing boundary at each time step when
doing forward simulation, and then reconstruct the incident wavefield backwards in



1

2

112 Pengliang Yang TCCS-8

time using the stored boundary. According to equation , the reconstruction is easy

pk‘fl — 2pk . karl 4 At2v2v2pk (9)

Therefore, we may employ the same subroutine by switching the role of wavefield
pF*t1 and p*~!. The elements in the boundary does not follow the above equation but
we can store it in forward simulation and re-inject them for backward reconstruction.

1. Redo forward modeling using the same model while storing the boundary at
each time step

v for (1t=0; it<nt; it4++){

2 add_source (pl, &wlt[it], &sxz[is]|, 1, nz, true);
3 step_forward (p0, pl, p2, vv, dtz, dtx, nz, nx);
4 ptr=p0; pO=pl; pl=p2; p2=ptr;

5 rw_bndr(&bndr [ it *(2+«nz4nx )], p0, nz, nx, true);
6 record_seis(&dobs[it*ng], gxz, p0, ng, nz);

8 if (it=kt){

9 sf_floatwrite (p0[0] ,nzxnx, checkl);
10 }

u |}

2. reverse propagate the incident wavefield backwards from final snapshot and
stored boundary: at each time step, inject the corresponding boundary

1 | ptr=p0; pO=pl; pl=ptr;
o | for (it=nt—1; it>—1; it ——){
3 rw_bndr(&bndr [ it *(2+%nz4nx )], pl, nz, nx, false);

5 if (it=kt){

6 sf_floatwrite (pl[0],nz*nx, check2);

oy

8 step_backward (p0, pl, p2, vv, dtz, dtx, nz, nx);
0 add_source(pl, &wlt[it], &sxz[is], 1, nz, false);
10 ptr=p0; pO=pl; pl=p2; p2=ptr;

11 }

3. check whether you perfectly reconstruct your incident wavefield at any time
step kt, as shown in Figure

The final SConstruct looks like

from rsf.proj import x

s | Flow( ’vel0 ' ,None,



© oo ~ (=] ot

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

TCCS-8 Primer for wave propagation 113

x2 (km) x2 (km)
0 0.1 02 0.3 04 05 06 07 08 0.9 0 0.1 02 03 04 05 06 07 08B 09
o S

x1 (km)
x1 (km)

I S -

snapshot forward snapshot backward

Figure 3: The backward reconstructed wavefield is the same as the incident wavefield

modeling2fwi/fbrec2d/ check

7

math output=1.6 nl1=50 n2=200 d1=0.005 d2=0.005
labell=x1 unitl=km label2=x2 unit2=km

777)

Flow (’vell ’  None,
math output=1.8 n1=50 n2=200 d1=0.005 d2=0.005
labell=x1 unitl=km label2=x2 unit2=km
P 7)

Flow (’vel2’ None,
math output=2.0 n1=100 n2=200 d1=0.005 d2=0.005
labell=x1 unitl=km label2=x2 unit2=km

777)
Flow(’vel’ [ ’vel0’, vell’,’vel2’], ’cat axis=1 ${SOURCES[1:3]}

Flow ( ’shot checkl check2’ ’vel’,

YA

sffbrec2d check1=${TARGETS[1]} check2=3{TARGETS[2]}
csdgather=n fm=15 dt=0.001 ns=1 ng=200 nt=1100 ng=200
sxbeg=100 szbeg=2 jsx=37 jsz=0

gxbeg=0 gzbeg=1 jgx=1 jgz=0

y 7)

Result ( ’shot’, grey gainpanel=all title=shot’)

Flow(’diff’, checkl check2’,’sfadd ${SOURCES[1]} scale=1,—1")

~—

kt=550



from rsf.proj import *

Flow('vel0',None,
     	'''
     	math output=1.6 n1=50 n2=200 d1=0.005 d2=0.005
     	label1=x1 unit1=km label2=x2 unit2=km 
     	''')

Flow('vel1',None,
     	'''
     	math output=1.8 n1=50 n2=200 d1=0.005 d2=0.005
     	label1=x1 unit1=km label2=x2 unit2=km 
     	''')
Flow('vel2',None,
     	'''
     	math output=2.0 n1=100 n2=200 d1=0.005 d2=0.005
     	label1=x1 unit1=km label2=x2 unit2=km 
     	''')
Flow('vel',['vel0','vel1','vel2'], 'cat axis=1 ${SOURCES[1:3]}')


Flow('shot check1 check2','vel',
	'''	
	sffbrec2d check1=${TARGETS[1]} check2=${TARGETS[2]} 
	csdgather=n fm=15 dt=0.001 ns=1 ng=200 nt=1100 ng=200 kt=550	
	sxbeg=100 szbeg=2 jsx=37 jsz=0 
	gxbeg=0 gzbeg=1 jgx=1 jgz=0
	''')

Result('shot','grey gainpanel=all title=shot')


Flow('diff','check1 check2','sfadd ${SOURCES[1]} scale=1,-1')


Plot('check1','grey title="snapshot forward" scalebar=y')
Plot('check2','grey title="snapshot backward" scalebar=y')
Plot('diff','grey title="difference" scalebar=y')

Result('check','check1 check2 diff','SideBySideIso')

End()



34

35

36

37

38

39

40

41

42

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

114 Pengliang Yang TCCS-8

Plot (’checkl’,’grey title="snapshot forward” scalebar=y’)
Plot ( check2’ | ’grey title="snapshot backward” scalebar=y’)
Plot (*diff’, grey title="difference” scalebar=y’)

Result ( "check ’, "checkl check2 diff’,’SideBySidelso’)

End ()

Do a synthetic FWI test using Marmousi model

It is convenient to perform adjoint simulation when reconstructing the incident wave-
field backwards. The computation of FWI gradient can be done on the fly by adding
several lines:

memset (sp0[0], 0, nzxnxxsizeof (float));

memset (spl[0], 0, nzxnxxsizeof (float));

for (it=0; it<nt; it++)

{
add_source (spl, &wlt[it], &sxz[is], 1, nz, true);
step_forward (sp0, spl, sp2, vv, dtz, dtx, nz, nx);
ptr=sp0; spO=spl; spl=sp2; sp2=ptr;
rw_bndr(&bndr [ it *(2%nz4nx )], sp0, nz, nx, true);

record_seis (dcal, gxz, sp0, ng, nz);

cal_residuals (dcal, &dobs[it*ng], &derr[is*ng*nt+it=*ng|, ng);

}

ptr=sp0; spO=spl; spl=ptr;

memset (gp0[0], 0, nzxnxxsizeof(float));

memset (gpl [0], 0, nzxnxxsizeof (float));

for (it=nt—1; it>-1; it——)

{
rw_bndr(&bndr [it *(2%nz4+nx )], spl, nz, nx, false);
step_backward (illum , lap, sp0, spl, sp2, vv, dtz, dtx, nz, n
add_source (spl, &wlt[it], &sxz[is], 1, nz, false);

add_source (gpl, &derr[is*ngxnt+it*ng|, gxz, ng, nz, true);
step_forward (gp0, gpl, gp2, vv, dtz, dtx, nz, nx);

cal_gradient (gl, lap, gpl, nz, nx);
ptr=sp0; spO=spl; spl=sp2; sp2=ptr;
ptr=gp0; gpO=gpl; gpl=gp2; gp2=ptr;




10

11

12

13

14

15

16

17

18

19

20

TCCS-8 Primer for wave propagation 115

}

Of course, to apply the steepest descent method for minimization of the misfit function
for waveform inversion, a step length has to be determined at each iteration. You
may use the estimation proposed by Pica et al. (1990,in the appendix) in your FWI
code as RSFSRC/user/pyang/Mfwi2d.c.

The workflow for synthetic FWI test based on Marmousi model follows the several
steps:

1. Obtain the Marmousi velocity model, which can be downloaded by Fetch(’marmvel .hh’, ’marm’;

in SConstruct, as shown in the top panel of Figure [4

2. We may start to generate the observed seismograms/shots using resampled Mar-
mousi, as shown in Figure [5]

3. By smoothing the true model using triangular window many times, an initial
model plotted in the bottom panel of Figure |4 is generated to do the FWI test.

4. Using the observed seismograms/shots from true model, we start the inversion
with the rough initial model.

5. You may appreciate your the inverted velocity during the iterations in Figure
[0, as well as the variations of the misfit function in Figure

A complete SConstruct for the above workflow appears in the following:

from rsf.proj import x

Fetch ( ’marmvel .hh’ | 'marm”)

Flow(’vel ’, "marmvel .hh’ |
dd form=native | window j1=8 j2=8 | sfsmooth rectl=3 r
put labell=Depth unitl=m label2=Lateral unit2=m
Y 77)
Plot ('vel ",
grey color=j mean=y title="Marmousi model”
scalebar=y bartype=v barlabel="V”
barunit="m/s” screenratio=0.45 color=j labelsz=10 titl

777)

Flow ( ’shots’,’vel |

)

ect2=3|

esz =12




21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

116 Pengliang Yang TCCS-8

sfmodeling2d csdgather=n fm=4 amp=1 dt=0.0015 ns=7 ng=288 nt=2800

sxbeg=4 szbeg=2 jsx=45 jsz=0 gxbeg=0 gzbeg=3 jgx=1 jgz
0 7)

Plot ( shots’, 'grey color=g title=shot label2= unit2=" view=1)

Plot (’shotl’ | ’shots’,

=0

'window n3=1 f3=0| grey title=shotl label2=Lateral unit2=m’)

Plot (’shot3 "’ ’shots

'window n3=1 f3=2| grey title=shot3 label2=Lateral unit2=m’)

Plot ( ’shot5’, ’shots |

'window n3=1 f3=4| grey title=shotb label2=Lateral unit2=m’)

Plot (’shot7’,’shots

"window n3=1 f3=6| grey title=shot7 label2=Lateral unit2=m’)

Result ( shotsnap ', "shotl shot3 shoth shot7’,
’SideBySideAniso’ ,vppen="txscale=2.")

Y

Flow(’smvel’, vel’, "smooth repeat=6 rectl=8 rect2=10")

Plot ( 'smvel ’,
grey title="Initial model” wantitle=y allpos=y color=j
pclip=100 scalebar=y bartype=v barlabel="V” barunit="m/s”
screenratio=0.45 color=j labelsz=10 titlesz=12

777)

Result ('marm’, ’vel smvel’  'TwoRows’)

Y

Flow( ’vsnaps grads objs illums’, ’smvel shots’,

79

sffwi2d shots=${SOURCES[1]}
grads=${TARGETS[1]} objs=3{TARGETS[2]}
illums=${TARGETS[3]} niter=10 precon=y rbell=1
777)

Result ( ’vsnaps’,

79

grey title="Updated velocity” allpos=y color=j pclip=100

scalebar=y bartype=v barlabel="V’ barunit="m/s”

777)

Plot ( vsnapl’, ’vsnaps’,
window n3=1|grey title="Updated velocity , iter=1"
allpos=y color=j pclip=100 labelsz=10 titlesz=12
scalebar=y bartype=v barlabel="V’ barunit="m/s”




66

67

68

69

70

71

72

73

74

75

76

s

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

TCCS-8 Primer for wave propagation 117

’77)

Plot (’vsnap2’, ’vsnaps’,
window n3=1 f3=1|grey title="Updated velocity , iter=2"
allpos=y color=j pclip=100 labelsz=10 titlesz=12
scalebar=y bartype=v barlabel="V” barunit="m/s”

a?:)

Plot ( ’vsnap4’, ’vsnaps’,
window n3=1 f3=3|grey title="Updated velocity , iter=4"
allpos=y color=j pclip=100 labelsz=10 titlesz=12
scalebar=y bartype=v barlabel="V’ barunit="m/s”

777)

Plot ( vsnap6’, vsnaps’,
window n3=1 f3=5|grey title="Updated velocity , iter=6"
allpos=y color=j pclip=100 labelsz=10 titlesz=12
scalebar=y bartype=v barlabel="V” barunit="m/s”

777)

Plot ( vsnap8’, vsnaps’,
window n3=1 f3=7|grey title="Updated velocity , iter==8"
allpos=y color=j pclip=100 labelsz=10 titlesz=12
scalebar=y bartype=v barlabel="V” barunit="m/s”

777)

Plot ( vsnapl0’, ’vsnaps’,
window n3=1 f3=9|grey title="Updated velocity , iter=1(
allpos=y color=j pclip=100 labelsz=10 titlesz=12
scalebar=y bartype=v barlabel="V” barunit="m/s”

’77)

Result ( ’vsnap’, vsnapl vsnap2 vsnap4 vsnap6 vsnap8 vsnaplO’,
"TwoRows ")

Result ("objs 7,

79

sfput n2=1 labell=Iteration unitl= unit2= label2= |
graph title="Misfit function” dash=0 plotfat=5
grid=y yreverse=n

777)

End ()

2



118 Pengliang Yang TCCS-8

Lateral (m)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(=}

(=]

o

le]

o

=39 3
E= Q)
] B

2 o
28 5>

o =]

o

(=3

[=]

o

[a¥

Marmousi model
Lateral (m)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

© (=3

(=}

o

<+

(=3

o (=]
g% i
< o g
‘a m
v o =

Ao [=]

o le}

o [a¥

(=3

[=]

o

[a¥

Initial model

Figure 4: Top: True Marmousi model; bottom: Initial model for FWI
modeling2fwi/marmtest/ marm

Lateral (m) Lateral (m) Lateral (m) Lateral (m)

0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000

2

Time (gec

shot1l shot3 shotb shot7

Figure 5: Shots from true Marmousi model | modeling2fwi/marmtest/ shotsnap




from rsf.proj import *

# marmvel.hh contains Marmousi model which can
# be downloaded from the server using Fetch.
Fetch('marmvel.hh','marm')

Flow('vel','marmvel.hh',
	'''
	dd form=native | window j1=8 j2=8 | sfsmooth rect1=3 rect2=3|
     	put label1=Depth  unit1=m label2=Lateral unit2=m
	''')
Plot('vel',
	'''
	grey color=j mean=y title="Marmousi model" 
	scalebar=y bartype=v barlabel="V" 
	barunit="m/s" screenratio=0.45 color=j labelsz=10 titlesz=12
	''')

Flow('shots','vel',
	'''
	sfmodeling2d csdgather=n fm=4 amp=1 dt=0.0015 ns=7 ng=288 nt=2800
	sxbeg=4 szbeg=2 jsx=45 jsz=0 gxbeg=0 gzbeg=3 jgx=1 jgz=0
	''')
Plot('shots','grey color=g title=shot label2= unit2=',view=1)


Plot('shot1','shots',
     'window n3=1 f3=0| grey title=shot1 label2=Lateral unit2=m')
Plot('shot3','shots',
     'window n3=1 f3=2| grey title=shot3 label2=Lateral unit2=m')
Plot('shot5','shots',
     'window n3=1 f3=4| grey title=shot5 label2=Lateral unit2=m')
Plot('shot7','shots',
     'window n3=1 f3=6| grey title=shot7 label2=Lateral unit2=m')
Result('shotsnap','shot1 shot3 shot5 shot7',
       'SideBySideAniso',vppen='txscale=2.')

# smoothed velocity model   
Flow('smvel','vel','smooth repeat=6  rect1=8 rect2=10')
Plot('smvel',
     '''
     grey title="Initial model" wantitle=y allpos=y color=j
     pclip=100 scalebar=y bartype=v barlabel="V" barunit="m/s"
	 screenratio=0.45 color=j labelsz=10 titlesz=12
     ''' )

Result('marm','vel smvel','TwoRows')

# use the over-smoothed model as initial model for FWI
Flow('vsnaps grads objs illums','smvel shots',
	'''
	sffwi2d shots=${SOURCES[1]} 
        grads=${TARGETS[1]} objs=${TARGETS[2]}
	illums=${TARGETS[3]} niter=10 precon=y rbell=1
	''')
Result('vsnaps',
	'''
	grey title="Updated velocity" allpos=y color=j pclip=100 
	scalebar=y bartype=v barlabel="V" barunit="m/s" 
	''')
Plot('vsnap1','vsnaps', 
	'''
	window n3=1|grey title="Updated velocity, iter=1" 
	allpos=y color=j pclip=100 labelsz=10 titlesz=12
	scalebar=y bartype=v barlabel="V" barunit="m/s" 
	''')
Plot('vsnap2','vsnaps', 
	'''
	window n3=1 f3=1|grey title="Updated velocity, iter=2" 
	allpos=y color=j pclip=100 labelsz=10 titlesz=12
	scalebar=y bartype=v barlabel="V" barunit="m/s" 
	''')
Plot('vsnap4','vsnaps', 
	'''
	window n3=1 f3=3|grey title="Updated velocity, iter=4" 
	allpos=y color=j pclip=100 labelsz=10 titlesz=12
	scalebar=y bartype=v barlabel="V" barunit="m/s" 
	''')

Plot('vsnap6','vsnaps', 
	'''
	window n3=1 f3=5|grey title="Updated velocity, iter=6"
	 allpos=y color=j pclip=100 labelsz=10 titlesz=12
	scalebar=y bartype=v barlabel="V" barunit="m/s" 
	''')
Plot('vsnap8','vsnaps', 
	'''
	window n3=1 f3=7|grey title="Updated velocity, iter=8"
	allpos=y color=j pclip=100 labelsz=10 titlesz=12
	scalebar=y bartype=v barlabel="V" barunit="m/s" 
	''')
Plot('vsnap10','vsnaps', 
	'''
	window n3=1 f3=9|grey title="Updated velocity, iter=10" 
	allpos=y color=j pclip=100 labelsz=10 titlesz=12
	scalebar=y bartype=v barlabel="V" barunit="m/s" 
	''')

Result('vsnap','vsnap1 vsnap2 vsnap4 vsnap6 vsnap8 vsnap10',
       'TwoRows')

Result('objs',
	'''
	sfput n2=1 label1=Iteration unit1= unit2= label2= |
	graph title="Misfit function" dash=0 plotfat=5 
        grid=y yreverse=n
	''')

End()



TCCS-8 Primer for wave propagation 119

Distance (m) Distance (m) Distance (m)
9 ZD‘OO 40‘00 60‘00 BD‘OO 0 20‘00 40‘00 60‘00 80‘00 9 ZD‘OO 40‘00 60‘00 BD‘OO
| i| T

0
0

) =) 1 i j o
g g :
B < <
(=]
=3 e o =
-8 8 -8 -8
E- g@ B~ 87 E- 2%
ISE IS o
5 85 = 8g = 25
= ° B, B,
gg g~ &g - &g -
S 8 S S °
@ o 0 S « Is)
g S &
0N
Updated velocity, iter=1 Updated velocity, iter=2 Updated velocity, iter=4
Distance (m) Distance (m) Distance (m)
0 20‘00 40‘00 60‘00 80‘00 Q 20‘00 40‘00 60‘00 80‘00 9 20‘00 40‘00 60‘00 80‘00
° ‘ 8 ° 3 ° ol E
& E: E:
(=} (=] (=}
—_ o —_ o —_ o
s gz B9 g5 E° 2%
5 SE 4 88 4 BE
Ao Qo oo
o =] o
Q o x o Q )
g g g
Updated velocity, iter=6 Updated velocity, iter=8 Updated velocity, iter=10
Figure 6: Inverted velocity during iterations |modeling2fwi/marmtest/ vsnap ‘
Misfit function
©
o
© \
°© N
< \
=
\\
oV I
=
1 2 3 4 5 6 7 8 9 10
[teration
Figure 7 The  misfit  function  decreases  during  iterations

modeling2fwi/marmtest/ objs ‘




120 Pengliang Yang TCCS-8

Your exercise

e It works so slow! How to speeed up? — CUDA (Yang et al., |2015,Mgpufwi.cu)
+ MPI high performance computing (Jeff)?

e How to improve the poor resulting velocity model in Figure [67 A better ini-
tial model by less smoothing? Increase the number of iterations? Estimate a
good step length to satisfy the Wolf condition? Estimate Hessian — Truncated

newton (Métivier et al.,|2014)+ Source encoding+ Good preconditioning?

e Derive the adjoint equation for first order wave equation system

Oop=kV-v+f,
poyv =Vp

where k = pv?.

e Write a forward simulation code based on sponge boundary condition using the
above system

e Derive your gradient expressions for velocity and density

e code your multiparameter FWI for inverting v and p

FURTHER THINKING

e The storage complexity using regular grid FD and staggered grid FD stencil?

e How to reduce the storage requirement for a 3-D volume? CFL — Nyquist:
decimation+ interpolation (Yang et al., |2016cid])

e How to derive the adjoint state equation? — Lagrange multiplier+cost function
(Plessix, |2006)7 What is the adjoint state equation for 1st order acoustic wave
equation, viscoacoustic system, viscoelastic system (Yang et al., [2016a)?

e [s it possible to do reverse propagation in attenuating medium? How to handle
instability? Binomial checkpointing— CARFS (checkpointing-assisted reverse-
forward simulation) (Yang et al., [2016b)?

e What if FWI using other norms/misfit function C?7 Only change the adjoint

source %—C?
/g



TCCS-8 Primer for wave propagation 121

CONCLUSION

1. No answer sheet for your exercises!

2. Too many open questions in FWI: good initial model? Misfit function immune
to cycle-skipping issue? Better preconditioning? Inverting attenuating?

3. FWI is a research field waiting for your addition!

REFERENCES

Carcione, J. M. (2010). A generalization of the fourier pseudospectral method. Geo-
physics, 75(6):A53-A56.

Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M. (1985). A nonreflecting boundary
condition for discrete acoustic and elastic wave equations. Geophysics, 50(4):2117—
2131.

Clayton, R. and Engquist, B. (1977). Absorbing boundary conditions for acoustic and
elastic wave equations. Bulletin of the Seismological Society of America, 67:1529—
1540.

Hicks, G. J. (2002). Arbitrary source and receiver positioning in finite-difference
schemes using Kaiser windowed sinc functions. Geophysics, 67:156-166.

Komatitsch, D. and Martin, R. (2007). An unsplit convolutional perfectly matched
layer improved at grazing incidence for the seismic wave equation. Geophysics,
72(5):SM155-SM167.

Métivier, L., Bretaudeau, F., Brossier, R., Operto, S., and Virieux, J. (2014). Full
waveform inversion and the truncated Newton method: quantitative imaging of
complex subsurface structures. Geophysical Prospecting, 62:1353—-1375.

Pica, A., Diet, J. P., and Tarantola, A. (1990). Nonlinear inversion of seismic reflection
data in laterally invariant medium. Geophysics, 55(3):284-292.

Plessix, R. E. (2006). A review of the adjoint-state method for computing the gradient
of a functional with geophysical applications. Geophysical Journal International,
167(2):495-503.

Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approxima-
tion. Geophysics, 49(8):1259-1266.

Virieux, J. and Operto, S. (2009). An overview of full waveform inversion in explo-
ration geophysics. Geophysics, 74(6):WCC1-WCC26.

Yang, P. (2014). A numerical tour of wave propagation. Technical report, Xi’an
Jiaotong University.



122 Pengliang Yang TCCS-8

Yang, P., Brossier, R., Métivier, L., and Virieux, J. (2016a). A systematic formulation
of 3D multiparameter full waveform inversion in viscoelastic medium. submitted to
Geophysical Journal International.

Yang, P., Brossier, R., Métivier, L., and Virieux, J. (2016b). Wavefield reconstruction
in attenuating media: A checkpointing-assisted reverse-forward simulation method.
submitted to Geophysics.

Yang, P., Brossier, R., and Virieux, J. (2016¢). Downsampling plus interpolation
for wavefield reconstruction by reverse propagation. In 78th EAGE Conference €
Ezxhibition Fxpanded Abstracts, number SBT5 08.

Yang, P., Brossier, R., and Virieux, J. (2016d). Wavefield reconstruction from signif-
icantly decimated boundaries. Geophysics, Accepted.

Yang, P., Gao, J., and Wang, B. (2015). A graphics processing unit implementation
of time-domain full-waveform inversion. Geophysics, 80(3):F31-F39.



