
Solving 3D Anisotropic Elastic Wave Equations on

Parallel GPU Devicesa

aPublished in Geophysics, 78, F7-F15, (2013)

Robin M. Weiss∗ and Jeffrey Shragge∗

ABSTRACT

Efficiently modeling seismic datasets in complex 3D anisotropic media by solving
the 3D elastic wave equation is an important challenge in computational geo-
physics. Using a stress-stiffness formulation on a regular grid, we present a 3D
finite-difference time-domain (FDTD) solver using a 2nd-order temporal and 8th-
order spatial accuracy stencil that leverages the massively parallel architecture of
graphics processing units (GPUs) to accelerate the computation of key kernels.
The relatively small memory of an individual GPU limits the model domain sizes
that can be computed on a single device. To circumvent this constraint and
move toward modeling industry-sized 3D anisotropic elastic data sets, we paral-
lelize computation across multiple GPU devices by using domain decomposition
and, for each time step, employing an inter-device communication protocol to
exchange data values falling within interior boundaries of each sub-domain. For
two or more GPU devices within a single compute node, we use direct peer-to-
peer (i.e., GPU-to-GPU) communication, while for networked nodes we employ
message-passing interface (MPI) directives to route data over the network. Our
2D GPU-based anisotropic elastic modeling tests achieved a 10× speedup relative
to an OpenMP CPU implementation run on an eight-core machine, while our 3D
tests using dual GPU devices produced up to a 28× speedup. The performance
boost afforded by the GPU architecture allows us to model seismic data for 3D
anisotropic elastic models at lower hardware cost and in less time than previously
possible.

INTRODUCTION

Efficiently calculating 3D elastic wavefields and data with algorithms capable of han-
dling large-scale acquisition geometries (e.g., wide-azimuth surveys) and/or complex
anisotropic media [e.g., horizontal transversely isotropic (HTI) or orthorhombic sym-
metries] remains a significant computational challenge. While there are a number
of commercially available modelling packages that satisfy these requirements, gen-
erally they are aimed at users of high-performance computing (HPC) facilities and
require significant dedicated cluster computing resources that remain too expensive
for smaller-scale research and development groups. Based on these arguments, there

Weiss & Shragge 2 GPU-based 3D elastic modeling

is a strong impetus for developing freely available, open-source, 3D elastic model-
ing solutions that can be run efficiently without the need for significant computing
infrastructure.

Within the last half decade there has been a significant increase of interest in
the exploration geophysics community of using general-purpose graphics processing
units (GPUs) as accelerators for key seismic modelling, imaging and inversion kernels
[e.g., Ohmer et al. (2005); Kuzma et al. (2007); Morton et al. (2008); Foltinek et al.
(2009)]. Owing to their wider memory bandwidth and often two orders of magnitude
more processors, albeit slower and lighter-weight than central processing unit (CPU)
architectures, GPUs have emerged as an excellent parallel computing platform for
problems characterized by a single-instruction multiple-data (SIMD) pattern. By
allowing many thousands of GPU threads to run concurrently, significant speedups of
SIMD-type problems on GPUs relative to CPUs have been documented in numerous
studies in many branches of applied computer science (Pharr and Fernando, 2005;
Nguyen, 2007).

For finite-difference time-domain (FDTD) solutions of wave equations (WEs) that
form the basis of many seismic modeling, migration and velocity inversion applica-
tions, a number of studies have developed compact wave-equation FD stencils and
algorithmic strategies that are well-suited for GPU implementation. Micikevicius
(2009) and Abdelkhalek et al. (2009) discuss GPU implementations of the 3D acous-
tic WE. Komatitsch et al. (2010) discuss a GPU-based finite-element formulation
of 3D anisotropic elastic wave propagation. Nakata et al. (2011) present results for
solving the 3D isotropic elastic WE on multiple GPUs. These studies present im-
pressive GPU runtimes of roughly one-tenth to one-twentieth of their corresponding
multi-core CPU-based implementations.

When aiming to compute seismic data and/or wavefields for realistic 3D model
sizes (i.e., N3 = 10003 where N is sample number in one dimension), though, the
relatively small global memory available on an individual GPU card relative to a
multi-core CPU chip (≤ 6 GBytes versus � 6 GBytes, respectively) makes single-
device GPU solutions of the 3D elastic WE intractable for realistic industry-sized
models. This issue is compounded for 3D anisotropic media because the additional
stiffness components (or equally anisotropic parameters) must also be held in memory.
Fortunately, this issue can be addressed by parallel computing strategies that utilize
domain decomposition to divide the computation across multiple GPU devices that
work in concert through a communication protocol (Micikevicius, 2009; Nakata et al.,
2011).

Starting with the ewefd2d and ewefd3d modeling codes that are freely available in
the archives of the Madagascar project (Fomel, 2012), we develop 2D/3D GPU-based
elastic wavefield modeling codes using NVIDIA’s CUDA application programming
interface (API). We similarly use a domain-decomposition strategy and present two
different protocols for communicating between GPU devices. For individual nodes
containing multiple GPUs (herein termed a consolidated node), we use direct peer-
to-peer (P2P) communication that allows GPU devices situated on the same PCIe

Weiss & Shragge 3 GPU-based 3D elastic modeling

bus to communicate without requiring intermediate data staging in system memory.
In a distributed computing environment the P2P strategy does not work because
GPUs do not share a common PCIe bus , and we must turn to the comparatively
slower message-passing interface (MPI) to handle inter-device communication.

Our goals in communicating the results of our modeling efforts - and the code
itself - are twofold. Firstly, to present a 3D FDTD elastic modeling code capable of
handing various transversely isotropic (TI) symmetries that can scale to computa-
tional domains sufficiently large to model realistic 3D acquisition geometries without
requiring massive CPU clusters to finish modeling runs in a “reasonable” duration of
time. Secondly, to release a set of open-source GPU-based modeling codes and re-
producible examples through the Madagascar project for both educational purposes
and to facilitate innovation and collaboration throughout the geophysics community.

We begin by discussing the governing equations for 3D elastic-wave propagation in
the stress-stiffness formulation, and presenting the discritization approach adopted for
a regular computational mesh. We then highlight the numerical algorithm and discuss
a number of issues regarding the GPU implementation strategy, including domain
decomposition and how we target multiple devices within consolidated and distributed
computing environments. We then provide a number of reproducible 2D/3D modeling
examples for different TI media, and present GPU-versus-CPU runtime and speedup
metrics that demonstrate the utility of the GPU-based modeling approach.

THEORY

The equations governing elastic wave propagation in 3D transversely isotropic media,
when assuming linearized elasticity theory and a stress-stiffness tensor formulation,
are fairly straightforward to implement in a numerical scheme. Our goal is to develop
finite-difference (FD) operators of 2nd- and 8th-order temporal and spatial accuracy,
respectively, that are well-suited for GPU hardware by virtue of being a compact
stencil with a regular memory access pattern.

The linear theory of elasticity [e.g., Landau and Lifshitz (1986)] establishes a
relationship between a vector seismic wavefield displaced infinitesimally from rest
and the dimensionless linear strain tensor. In indicial notation we write

εkl =
1

2
[∂kul + ∂luk] , k, l = 1, 2, 3, (1)

where εkl is an element of the linear strain tensor, ∂k is the spatial derivative in the kth

direction, and ul is the lth component of wavefield displacement. Herein, we assume
Cartesian geometry where the x-, y- and z-axes are represented by indices i = 1, 2, 3,
respectively, and use summation notation for repeated indices.

The linear strain tensor, εkl, is related to the Cauchy stress tensor, σij, through
a constitutive relationship that describes the elastic material properties through a

Weiss & Shragge 4 GPU-based 3D elastic modeling

fourth-order stiffness tensor cijkl:

σij = cijklεkl. (2)

The above equations can be combined into the equations of motion, derivable from
Newton’s second law, that describe wave propagation through an anisotropic elastic
medium:

ρ∂2
ttui = ∂jσij + Fi, (3)

where Fi is the body force per unit volume (that can be implemented as an equivalent
stress source), ρ is material density, and ∂2

tt is the second-order temporal derivative.

Numerical approach

Any numerical implementation of equations 1-3 requires specifying both a compu-
tational mesh and a numerical discritization scheme. We define a Nx × Ny × Nz

computational grid and use Nt time steps such that a grid point in space and time
can be represented by quadruplet [x, y, z|t] = [p∆x, q∆y, r∆z|n∆t], where the integer
counters have the ranges p = 1, Nx, q = 1, Ny, r = 1, Nz and n = 1, Nt. Continuous
wavefield displacements at a given location are represented on the discritized grid as

ui
∣∣
x,y,z|t ≈ u

p,r,q|n
i . (4)

We approximate the first derivative ∂j by a compact centered difference operator Dx[·]
of 8th-order accuracy (Trefethen, 1996)

∂xuj ≈ Dx[u
p,q,r|n
j] =

1

∆x

4∑
α=1

Wα

(
u
p+α,q,r|n
j − up−α,q,r|nj

)
, (5)

where Wα are polynomial weights given by W =
[

+4
5
−1
5

+4
105

−1
280

]
. Spatial difference op-

erators Dy[·] and Dz[·] are specified similarly for the y− and z−directional derivatives,
and all three are used for derivatives of the constitutive relationship in equation 3
(i.e., ∂jcijkl). We use a standard second-order accuracy approximation for the second
time derivative in equation 3

∂2
ttuj ≈ Dttu

p,q,r|n
j =

1

∆t2

[
u
p,q,r|n+1
j − 2u

p,q,r|n
j + u

p,q,r|n−1
j

]
. (6)

Inserting the above difference operators into equations 1-3 and rearranging terms leads
to a FD scheme for calculating the unknown wavefield solution at the forward time
step, u

p,q,r|n+1
j , given wavefield values at the current and previous time steps, u

p,q,r|n
j

and u
p,q,r|n−1
j , and stencil points neighboring u

p,q,r|n
j in the x-, y- and z-directions.

Figure 1 depicts the FD stencil constructed from the points about u
p,q,r|n
j at the

current time step.

These difference operators allow us to specify a time-stepping scheme to calculate
wavefield displacements in 3D elastic anisotropic media throughout the model domain.

Weiss & Shragge 5 GPU-based 3D elastic modeling

Y
X

Z

Figure 1: The 25 data points required to approximate a first derivative at the center
shaded point using a FD stencil of 8th-order accuracy.

Weiss & Shragge 6 GPU-based 3D elastic modeling

However, additional work is required to treat both the free-surface boundary and to
minimize the energy in non-physical exterior boundary reflections. Implementing
free-surface boundary conditions is fairly straightforward on a uniform grid because a
(topography-free) free surface can be placed directly on the boundary which, assuming
the free-surface normal vector points in the z-direction, allows us to set σi3 = 0 where
i = 1, 2, 3. We treat the other boundaries using a cascade of two operators comprised
of absorbing boundary conditions (ABCs) derived from a one-way wave equation
(Clayton and Enquist, 1977) and an exponential-damping sponge layer (Cerjan et al.,
1985) of at least 48 grid points.

Figure 2 presents the nine procedural steps in the 3D FDTD algorithm required for
calculating each forward time-step: 1) Compute strains εkl from wavefield displace-
ments according to equation 1; 2) Calculate stresses σij from constitutive relationship
cijkl and εkl according to equation 2; 3) Enforce the free-surface boundary condition
(if required); 4) Inject a stress source (if not an acceleration source); 5) Compute
acceleration from stress tensor (i.e., RHS = ∂jσij); 6) Inject an acceleration source

(if not a stress source; RHS
+
= Fj); 7) Compute the forward time step from current

and previous wavefield values; 8) Apply boundary conditions through cascade of ABC
and sponge operators; and 9) Output data/wavefield as required. The next section
details our GPU implementation of these steps.

GPU IMPLEMENTATION

Each procedural step of our 3D FDTD algorithm is implemented as a GPU ker-
nel function that is called at each time step by a CPU-based control thread. The
computationally intensive steps of our algorithm are thus offloaded to the GPU (see
Figure 2), where computation is greatly accelerated by concurrent execution of thou-
sands of threads on the many hundred cores of the device.

Steps 1 and 5, the most computationally expensive steps of our algorithm, apply
the FD stencil shown in Figure 1 at all points in the computational grid. The 8th-
order stencil requires evaluating 25 data values per grid point, which potentially
leads to a high number of transactions from the very high latency global memory.
Minimizing the total number of these transactions is thus essential for maintaining
high performance.

We adopt the method proposed in Micikevicius (2009) that minimizes global mem-
ory read redundancy and thereby mitigates the negative performance impact of high
latency memory. This approach effectively optimizes the sharing of data between
threads - thereby reducing the number of global memory transaction - by retrieving
and storing a 2D plane of data in smaller but (roughly two orders of magnitude) faster
shared memory and evaluating neighboring stencils concurrently. The 2D plane of
threads is oriented perpendicular to the slowest-varying y-axis, thereby optimizing
retrieval of values from global memory by reading from more contiguous data blocks.
This 2D algorithm then repeats slice-by-slice as the computation progresses through

Weiss & Shragge 7 GPU-based 3D elastic modeling

CPU

Start
Read Source

Wavelet,
Stiffness, and

Density
Fields

GPU

Maximum
of Timesteps
Completed?

Write
data to

disk

No

Done

Yes

Initialize GPU
data

structures and
copy model
data to GPU

Stress
Source?

Accel
Source?

No

No

Yes

Yes

Free
Surface?

No

Displacement To Strain

...

...
......

1

Strain to Stress

...

...
...... ...

2

Near Surface BC

...

3
Inject Stress Source

4

Stress To Acceleration

...

...
......

5

Inject Accel Source
6

Advance Time

...

...
...... ...

7

Boundary Conditions
8

Extract Receiver Data
9

Yes

Figure 2: Control flow for FDTD algorithm implemented on a single GPU, including
the division of tasks between the CPU host and GPU device.

Weiss & Shragge 8 GPU-based 3D elastic modeling

the 3D volume.

The boundary condition kernel in Step 8 that applies a cascade of operators to
treat the domain edge values also exhibits performance limitations due to memory
access pattern. Wavefield values are stored in memory as a 1D array varying from
continuous in the x-axis to a linear stride in the z-axis to a 2D plane offset in the
y-axis. Accordingly, applying boundary conditions in the z − y plane necessarily
requires retrieving data from non-continuous memory locations leading to sub-optimal
kernel performance. It remains to be determined whether this limitation can be
circumvented through storing grid data in an alternative structure or in another form
of GPU memory better optimized for 3D spatial locality.

The GPU kernels for Steps 2-4, 6-7 and 9 represent vector-vector operations that
are highly efficient on GPU. We adopt a straightforward data-parallel scheme where
one GPU thread per grid point is used to calculate the required values in a massively
concurrent fashion. The high latency associated with global memory is hidden by
the high degree of concurrency that allows computation to continue in some threads
whilst others wait for memory transactions to complete. The use of shared memory
for these kernels does not afford any acceleration because there is zero redundancy
in memory transactions. Dimensions for thread blocks used in each kernel invocation
were selected such that occupancy is maximized (as determined by NVIDIA’s CUDA
Occupancy Calculator). The selected values were then tuned experimentally with the
NVIDIA Visual Profiler to identify the optimal configuration.

Multiple GPU Implementation

When solving the 3D elastic WE on large-scale model domains (i.e., Nx×Ny ×Nz >
3003), the limited global memory of an individual GPU precludes storage of the
entire grid on a single device. To parallelize our 3D FDTD algorithm across multiple
GPUs, we adopt a domain-decomposition scheme, illustrated in Figure 3, that divides
the computational grid in the slowest varying y-axis direction and assigns the sub-
domains to separate GPU devices. Each GPU individually executes Steps 1-9 on its
assigned sub-domain, whilst CPU-based control threads coordinate the operations
of the multiple devices, enable inter-device communication, and combine results to
produce the output data.

Because the FD stencil in Figure 1 requires data from points extending four units
in the forward and backward y-axis directions, the GPU threads that apply the stencil
to points along the sub-domain edges may require data from a logically adjacent
device. Therefore, boundary data from adjacent sub-domains must be exchanged
between GPUs at every time step. This communication can be expensive due to the
limited bandwidth of the PCIe bus within a node and/or the network connections
between nodes in a distributed system.

In a consolidated multi-GPU computing environment where all devices share a
common PCIe bus, the P2P protocol in NVIDIA’s CUDA v4.0 (assuming a GPU with

Weiss & Shragge 9 GPU-based 3D elastic modeling

Node 1Node 0
GPU 0 GPU 1

Y
X

Z

{ { { { { {

GPU 0 GPU 1

MPI
P2P

MPI

P2P

MPI

Figure 3: Schematic of the domain decomposition of the computational grid along
the y-axis across four GPU devices shared equally in two compute nodes. Data in
the interior boundary regions of each subdomain must be shared with their logical
neighbor using either P2P or MPI in the gray area, and necessarily with MPI across
the black hatched region.

Weiss & Shragge 10 GPU-based 3D elastic modeling

compute capability of ≥2.0) can be used to directly exchange data between devices.
For a distributed GPU environment, direct P2P communication is not possible as
the devices neither share a common PCIe bus nor have direct access to the network.
Therefore, as shown in Figure 4, the CPU-based control threads must use the MPI
communication interface (or equivalent) to enable communication over the network.

Node 1

GPU 0 GPU 1

Node 0

GPU 0 GPU 1

P2P or MPI P2P or MPI

MPI

Figure 4: Schematic showing distributed computing environment where MPI is used
to communicate between nodes, and either MPI or (hybrid) P2P communication is
used within a node.

By eliminating system memory allocation and copy overhead, direct P2P memory
transfer reduces total compute time by 10−15% when compared to using MPI-based
send/receive commands within a consolidated compute node. In a hybrid environment
of distributed multi-GPU compute nodes, a hybrid communication scheme can be
adopted where each node uses a single CPU control thread for managing local GPUs
(utilizing P2P transfers between devices) while communicating when necessary with
remote GPUs via the MPI sub-system. However, for the sake of simplifying our
released codes and reproducible examples, we refrain from discussing this situation
in more detail herein.

MODELING EXAMPLES

In this section we demonstrate the utility of the GPU-based modeling approach by
presenting reproducible numerical tests using the 2D/3D elastic FDTD codes for
different TI models. The first set of tests involve applying the FDTD code to 2D
homogeneous isotropic and VTI media. We define our test isotropic medium by P-
and S-wave velocities of vp=2.0 km/s and vs=vp/

√
3, and a density of ρ=2000 kg/m3.

The VTI medium uses the same vp, vs and ρ, but includes three Thomsen parameters
(Thomsen, 1986) of [ε1, δ1, γ1] = [0.2,−0.1, 0.2]. Figures 5a-(b) present the vertical

Weiss & Shragge 11 GPU-based 3D elastic modeling

and horizontal components, uz and ux respectively, of the 2D isotropic impulse re-
sponse tests, while Figures 5c-(d) show the similar components for the VTI model.
Both tests generate the expected wavefield responses when compared to the CPU-only
code results.

a b

c d

Figure 5: 2D Impulse response tests with the ewefd2d gpu modelling code. (a)
Isotropic model uz component. (b) Isotropic model ux component. (c) VTI model uz
component. (d) VTI model ux component.

Figure 6 presents comparative GPU versus CPU metrics for a number of squared
(N2) model domains and runs of 1000 time steps. We ran the OpenMP-enabled CPU
ewefd2d code on a dedicated workstation with a dual quad-core Intel Xeon chipset,
and computed the corresponding GPU benchmarks on the 480-core NVIDIA GTX
480 GPU card. Because we output receiver data at every tenth time step, the reported
runtimes involve both parallel and serial sections, which hides some of the speedup
advantage of the GPU parallelism. Figure 6a presents computational runtimes for the
CPU (red line) and GPU (blue line) implementations. The reported runtime numbers
are the mean value of ten repeat trials conducted for each data point. Figure 6b shows
the 10× speedup of the GPU implementation relative the CPU-only version.

Our second example tests the relative accuracy of the two implementations on a
heterogenous isotropic elastic model. We use the publicly available P-wave velocity
and density models of the 2004 BP synthetic dataset (Billette and Brandsberg-Dahl,
2005), and assume a S-wave model defined by vs = vp/

√
3. We use temporal and

Weiss & Shragge 12 GPU-based 3D elastic modeling

a

b

Figure 6: GPU (blue line) versus CPU (red line) performance metrics showing the
mean of ten trials for various square (N2) model domain using the ewefd2d code. (a)
Computational run time. (b) Speedup.

Weiss & Shragge 13 GPU-based 3D elastic modeling

spatial sampling intervals of ∆t = 0.5 ms and ∆x = ∆y = 0.005 km and inject a
40 Hz Ricker wavelet as a stress source for each wavefield component.

Figure 7 shows a snapshot of the propagating wavefield overlying the P-wave
velocity model. Figures 8(a)-(b) presents the corresponding data from the CPU and
GPU implementations, respectively, while Figure 8(c) shows their difference clipped
to the same scale. The L2 energy norm in the difference panel is roughly 2.0e−5 of
that in the CPU/GPU versions, indicating that the GPU version is accurate to within
a modest amount above floating-point precision. This slight discrepancy is expected
due to the differences in treatment of math operations between the GPU and CPU
hardware (Whitehead and Fit-Florea, 2011); however, we assert that this will not
create problems for realistic modeling applications.

Figure 7: Wavefield snapshot overlying part of the P-wave model of the realistic BP
velocity synthetic.

3D examples

We test the 3D multi-GPU implementation by computing impulse responses for 3D
elastic media with different TI symmetries: isotropic, VTI, HTI and orthorhom-
bic. Each example again uses the isotropic parameter set of vp=2.0 km/s, vs =
vp/
√

3, and ρ = 2000 kg/m3, but incorporates different Thomsen anisotropy param-
eters. We define our VTI medium by [ε1, δ1, γ1] = [0.2,−0.1, 0.2], our HTI model by
[ε2, δ2, γ2] = [0.2,−0.1, 0.2], and our orthorhombic medium by [ε1, ε2, δ1, δ2, δ3, γ1, γ2] =
[0.2, 0.25,−0.1,−0.05,−0.075, 0.2, 0.5]. These parameters are transformed into stiff-

Weiss & Shragge 14 GPU-based 3D elastic modeling

Figure 8: Data Modeled through for BP velocity synthetic model. (a) GPU imple-
mentation. (b) CPU implementation. (c) Data difference between GPU and CPU
implementations clipped at the same level as (a) and (b).

ness tensor values using appropriate transformation rules (Thomsen, 1986). Fig-
ures 9a-(d) present a color-coded representation of the 6x6 Cij Voigt representation
of stiffness matrix cijkl for the isotropic, VTI, HTI and orthorhombic models used in
the 3D impulse response tests, respectively.

We model seismic data on a Nx ×Ny ×Nz = 2043 mesh at uniform ∆x = ∆y =
∆z = 0.005 km spacing, assuming a 35 Hz Ricker wavelet stress source that we
inject in each wavefield component. Figures 10a-(d) present the 3D impulse responses
for the vertical component (uz) for isotropic, VTI, HTI and orthorhombic media,
respectively. Again, the GPU modeled wavefields for each TI medium are as expected
when compared to results from the corresponding CPU code (not shown).

Figure ?? presents performance metrics for a number of different cubic (N3) model
dimensions. Figure ?? shows the runtimes for four different ewefd3d implementations:
eight-core CPU (green line), single GPU (blue line), two GPUs with MPI commu-
nication within a single consolidated node (red line), and two GPUs with P2P com-
munication within a single consolidated node (magenta line). Each reported runtime
number is the mean value of ten repeat trials. The speedup metric shown in Figure ??
documents up to a 16× improvement over CPU benchmarks when using a single GPU
device (blue line), and up to 28× improvement when using two GPU devices and P2P
communication (magenta line). Generally, we observe increasing speedups when mov-
ing to larger model domains. Future multi-GPU tests will determine where this trend
levels off. Figure 11c presents the P2P versus MPI speedup benchmark. We note that
the MPI-based communication has a 10-15% overhead cost, which is expected due

Weiss & Shragge 15 GPU-based 3D elastic modeling

a b

c d

Figure 9: Elastic stiffness moduli in 6x6 Voigt notation for four elastic models with
TI different symmetry. (a) Isotropic. (b) VTI. (c) HTI. (d) Orthorhombic.

Weiss & Shragge 16 GPU-based 3D elastic modeling

a b

c d

Figure 10: 3D Impulse responses (uz shown) for four elastic models with different TI
symmetry. (a) Isotropic. (b) VTI. (c) HTI. (d) Orthorhombic.

Weiss & Shragge 17 GPU-based 3D elastic modeling

to the time required for repeatedly writing to a pinned memory location during the
numerous MPI Send/Receive transfers required at each time step; this effect, though,
diminishes with increasing model size. Note that the test results are benchmarks for a
single consolidated node, and that in a true distributed compute environment where
GPUs are located in networked nodes, network bandwidth and latency will have a
significant impact on total compute time.

Our last test illustrates the utility of the 3D FDTD code for modeling wavefields
through 3D heterogeneous anisotropic elastic media. Figures 12a-(b) present the
C44 coefficient showing a layered earth model with a single dipping interface for the
isotropic and HTI media, respectively. We superposed a snapshot of the propagating
wavefield to demonstrate the complexity caused by the HTI media relative to an
isotropic medium. The evident differences between the two wavefields indicates the
importance of modelling realistic 3D anisotropic behavior, especially for velocity and
anisotropic parameter estimation applications.

CONCLUSIONS

We present a GPU-based FDTD solution to the 3D elastic wave equation in a stress-
stiffness formulation on a regular computational mesh that allows rapid modeling
of data sets for 3D anisotropic TI media. We present a FD formulation of 2nd-order
temporal and 8th-order spatial accuracy that leads to a compact stencil with a regular
memory access pattern that is well-suited for running wavefield simulations on GPU
devices. For the 3D algorithm we follow a loop unrolling approach over the slowest
varying axis to minimize read redundancy from the GPU global memory. To circum-
vent the relatively limited memory on a GPU card, we use a domain decomposition
strategy and employ CUDA’s native P2P communications between multiple GPU
devices housed within a single node. For situations involving a network of GPU-
enabled compute nodes, we use the MPI instruction set to enable communication
between GPUs.

For 2D elastic modeling we achieved a 10× GPU speedup relative to an eight-
core CPU version, while 3D anisotropic elastic modeling tests indicate up to a 16×
improvement for a single GPU and a maximum 28× speedup when using two GPU
devices relative to CPU benchmarks. These GPU-based speedup improvements allow
us to efficiently model 3D elastic anisotropic phenomena and compute data sets for
velocity and anisotropic parameter estimation and migration at lower hardware cost
and with fewer total compute resources than heretofore possible.

ACKNOWLEDGMENTS

This research was partly funded by the sponsors of the UWA:RM consortium. We
thank Paul Sava for the CPU versions of the ewefd2d and ewefd3d modeling codes, and
David Lumley and Matt James for constructive conversations. We thank NVIDIA

Weiss & Shragge 18 GPU-based 3D elastic modeling

a

b

c

Figure 11: Performance metrics showing the mean of ten trials for various cube (N3)
model domains using the ewefd3d code. (a) Computational run time for CPU (green
line), a single GPU (blue line), two GPU with MPI communication (red line), and
two GPU with P2P communciation (magenta line). (b) Speedup relative to CPU for
single GPU (red line), and two GPUs with MPI (blue line) and P2P communication
(magenta line). (c) Relative speed for the P2P versus MPI communication.

Weiss & Shragge 19 GPU-based 3D elastic modeling

a

b

Figure 12: 3D impulse responses calculcated through a layered earth model with a
single dipping layer. (a) Isotropic. (b) HTI.

Weiss & Shragge 20 GPU-based 3D elastic modeling

for the GTX 480 and C2070 GPU cards used for research and development through
the CUDA Research Center Program and a Professor Partnership Grant. We thank
Joe Dellinger, Chris Leader and two anonymous reviewers for insightful comments
and for helping to verify the modeling codes. The reproducible numeric examples
use the Madagascar open-source package (http://www.reproducibility.org). Shragge
acknowledges WAERA support through a Research Fellowship. We also acknowledge
Professor David A. Yuen from the University of Minnesota for assistance in testing
our software.

REFERENCES

Abdelkhalek, R., H. Calandra, O. Couland, G. Latu, and J. Roman, 2009, Fast seismic
modeling and reverse time migration on a GPU cluster: HPCS09, Proceedings of
the 2009 High Performance Computing & Simulation, 3643.

Billette, F., and S. Brandsberg-Dahl, 2005, The 2004 BP velocity benchmark: 67th
Annual Meeting and Convention, EAGE, Expanded Abstracts, B035–B038.

Cerjan, C., C. Kosloff, R. Kosloff, and M. Reshef, 1985, A non-reflecting boundary
condition for discrete acoustic and elastic wave equation: Geophysics, 50, 705–708.

Clayton, R., and B. Enquist, 1977, Absorbing boundary conditions for acoustic and
elastic wave equations: Bulletin of the Seismological Society of America, 67, 1529–
1540.

Foltinek, D., D. Eaton, J. Mahovsky, P. Moghaddam, and R. McGarry, 2009,
Industrial-scale reverse time migration on GPU hardware: SEG Technical Program
Expanded Abstracts, 28, 2789–2793.

Fomel, S., 2012, Madagascar web portal: http://www.reproducibility.org (accessed 9
Feb 2012).

Komatitsch, D., G. Erlebacher, D. Göddeke, and D. Michéa, 2010, High-order finite-
element seismic wave propagation modeling with MPI on a large GPU cluster:
Journal of Computational Physics, 229, 7692–7714.

Kuzma, H. A., D. Bremer, and J. W. Rector, 2007, Support vector machines im-
plemented on a graphics processing unit: SEG Technical Program Expanded Ab-
stracts, 26, 2089–2093.

Landau, L. D., and E. M. Lifshitz, 1986, Theory of elasticity, 3rd edition: Pergamon
Press.

Micikevicius, P., 2009, 3D Finite Difference computation on GPUs using CUDA:
Presented at the GPGPU2.

Morton, S., T. Cullison, and P. Micikevicius, 2008, Experiences with seismic imaging
on gpus: 70th EAGE Conference & Exhibition, Expanded Abstracts, W08.

Nakata, N., T. Tsuji, and T. Matsuoka, 2011, Acceleration of computation speed for
elastic wave simulation using a Graphic Processing Unit: Exploration Geophysics,
42, 98–104.

Nguyen, H., 2007, GPU Gems 3: Addison-Wesley Professional.
Ohmer, J., F. Maire, and R. Brown, 2005, Implementation of Kernel Methods on

the GPU: Digital Image Computing: Techniques and Applications, DICTA’05,

Weiss & Shragge 21 GPU-based 3D elastic modeling

Expanded Abstracts, 78.
Pharr, M., and R. Fernando, 2005, GPU Gems 2: Programming techniques for high-

performance graphics and general-purpose computation: Addison-Wesley Profes-
sional.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966.
Trefethen, L. N., 1996, Finite difference and spectral methods for ordinary and partial

differential equations: Cornell University.
Whitehead, N., and A. Fit-Florea, 2011, Precision & Performance: Floating Point and

IEEE 754 Compliance for NVIDIA GPUs: Technical report, NVIDIA Corporation,
Santa Clara, California, USA.

