Wave-equation time migration
Next:
About this document ...
Up:
Fomel & Kaur: Wave-equation
Previous:
Conclusions
Bibliography
Baina, R., P. Thierry, and H. Calandra, 2002, 3D preserved-amplitude prestack depth migration and amplitude versus angle relevance: The Leading Edge,
21
, 1237-1241.
Bednar, J. B., 2005, A brief history of seismic migration: Geophysics,
70
, no.3, 3MJ-20MJ.
Bevc, D., J. L. Black, and G. Palacharla, 1995, Plumes: Response of time migration to lateral velocity variation: Geophysics,
60
, 1118-1127.
Biondi, B., 2006, 3-D seismic imaging: Society of Exploration Geophysicists.
Burnett, W., and S. Fomel, 2011, Azimuthally anisotropic 3D velocity continuation: International Journal of Geophysics, Article ID 484653.
Cameron, M., S. Fomel, and J. Sethian, 2007, Seismic velocity estimation from time migration velocities: Inverse Problems,
23
, 1329-1369.
----, 2008a, Seismic velocity estimation and time to depth conversion of time-migrated images: Geophysics,
73
, VE205-VE210.
----, 2008b, Time-to-depth conversion and seismic velocity estimation using time-migration velocity: Geophysics,
73
, no.5, VE205-VE210.
----, 2009, Analysis and algorithms for a regularized Cauchy problem arising from a non-linear elliptic PDE for seismic velocity estimation: Journal of Computational Physics,
228
, 7388-7411.
Chapman, C., 2004, Fundamentals of seismic wave propagation: Cambridge University Press.
Claerbout, J., 1995, Basic earth imaging: Stanford Exploration Project.
Clapp, R. G., P. Sava, and J. F. Claerbout, 1998, Interval velocity estimation with a null-space,
in
SEP-97: Stanford Exploration Project, 147-156.
Coimbra, T. A., J. J. S. de Figueiredo, J. Schleicher, A. Novais, and J. C. Costa, 2013, Migration velocity analysis using residual diffraction moveout in the poststack depth domain: Geophysics,
78
, no.3, S125-S135.
Cooke, D., A. Bóna, and B. Hansen, 2009, Simultaneous time imaging, velocity estimation, and multiple suppression using local event slopes: Geophysics,
74
, no.6, WCA65-WCA73.
Decker, L., D. Merzlikin, and S. Fomel, 2017, Diffraction imaging and time-migration velocity analysis using oriented velocity continuation: Geophysics,
82
, no.2, U25-U35.
Dell, S., and D. Gajewski, 2011, Common-reflection-surface-based workflow for diffraction imaging: Geophysics,
76
, S187-S195.
Dell, S., D. Gajewski, and M. Tygel, 2014, Image-ray tomography: Geophysical Prospecting,
62
, 413-426.
Dix, C. H., 1955, Seismic velocities from surface measurements: Geophysics,
20
, 68-86.
Etgen, J., S. H. Gray, and Y. Zhang, 2009, An overview of depth imaging in exploration geophysics: Geophysics,
74
, no.6, WCA5-WCA17.
Fomel, S., 2003, Time-migration velocity analysis by velocity continuation: Geophysics,
68
, no.5, 1662-1672.
----, 2007a, Shaping regularization in geophysical-estimation problems: Geophysics,
72
, no.2, R29-R36.
----, 2007b, Velocity-independent time-domain seismic imaging using local event slopes: Geophysics,
72
, no.3, S139-S147.
----, 2013, Wave-equation time migration,
in
SEG Technical Program Expanded Abstracts 2013: Society of Exploration Geophysicists, 3703-3708.
Fomel, S., and A. Guitton, 2006, Regularizing seismic inverse problems by model re-parameterization using plane-wave construction: Geophysics,
71
, no.5, A43-A47.
Fomel, S., E. Landa, and M. T. Taner, 2007, Post-stack velocity analysis by separation and imaging of seismic diffractions: Geophysics,
72
, no.6, U89-U94.
Fomel, S., L. Ying, and X. Song, 2013, Seismic wave extrapolation using lowrank symbol approximation: Geophysical Prospecting,
61
, 526-536.
Forel, D., T. Benz, and W. D. Pennington, 2005, Seismic data processing with seismic unix: A 2d seismic data processing primer: Society of Exploration Geophysicists.
Fowler, P., 1984, Velocity independent imaging of seismic reflectors,
in
SEG Technical Program Expanded Abstracts 1984: Society of Exploration Geophysicists, 383-385.
Gelius, L.-J., and M. Tygel, 2015, Migration-velocity building in time and depth from 3D common-reflection-surface (CRS) stacking-theoretical framework: Studia Geophysica et Geodaetica,
59
, no.2, 253-282.
Glöckner, M., B. Schwarz, C. Vanelle, and D. Gajewski, 2016, Kinematic time demigration with an automatically generated velocity model: 78th EAGE Conference and Exhibition 2016, European Association of Geoscientists & Engineers, 1-5.
Glogovsky, V., E. Landa, S. hangman, and T. J. Moser, 2008, How correct is a velocity model?,
in
SEG Technical Program Expanded Abstracts 2008: Society of Exploration Geophysicists, 3572-3576.
----, 2009, Validating the velocity model: the Hamburg score: First Break,
27
, 77-85.
Gray, S. H., J. Etgen, J. Dellinger, and D. Whitmore, 2001, Seismic migration problems and solutions: Geophysics,
66
, 1622-1640.
Harlan, W. S., J. F. Claerbout, and F. Rocca, 1984, Signal/noise separation and velocity estimation: Geophysics,
49
, 1869-1880.
Hatton, L., L. K. Larner, and B. S. Gibson, 1981, Migration of seismic data from inhomogeneous media: Geophysics,
46
, 751-767.
Hubral, P., 1977, Time migration—some ray theoretical aspects: Geophysical prospecting,
25
, 738-745.
Iversen, E., and M. Tygel, 2008, Image-ray tracing for joint 3D seismic velocity estimation and time-to-depth conversion: Geophysics,
73
, no.3, S99-S114.
Jones, I. F., 2010, An introduction to velocity model building: EAGE.
Larner, K. L., L. Hatton, B. S. Gibson, and I. S. Hsu, 1981, Depth migration of imaged time sections: Geophysics,
46
, 734-750.
Li, S., and S. Fomel, 2013, A robust approach to time-to-depth conversion in the presence of lateral-velocity variations,
in
SEG Technical Program Expanded Abstracts 2013: Society of Exploration Geophysicists, 4800-4805.
----, 2015, A robust approach to time-to-depth conversion and interval velocity estimation from time migration in the presence of lateral velocity variations: Geophysical Prospecting,
63
, 315-337.
Robein, E., 2003, Velocities, time-imaging and depth-imaging in reflection seismics: EAGE.
Santos, H. B., T. A. Coimbra, J. Schleicher, and A. Novais, 2015, Prestack time-migration velocity analysis using remigration trajectories: Geophysics,
80
, S151-S163.
Sava, P., and S. Fomel, 2005, Riemannian wavefield extrapolation: Geophysics,
70
, no.3, T45-T56.
Shragge, J., and G. Shan, 2008, Prestack wave-equation depth migration in elliptical coordinates: Geophysics,
73
, S169-S175.
Shragge, J. C., 2008, Riemannian wavefield extrapolation: Nonorthogonal coordinate systems: Geophysics,
73
, T11-T21.
Sripanich, Y., and S. Fomel, 2018, Fast time-to-depth conversion and interval velocity estimation in the case of weak lateral variations: Geophysics,
83
, no.3, S227-S235.
Tikhonov, A. N., and V. Y. Arsenin, 1977, Solutions of ill-posed problems: Winston.
Valenciano, A. A., M. Brown, A. Guitton, and M. D. Sacchi, 2004, Interval velocity estimation using edge-preserving regularization,
in
SEG Technical Program Expanded Abstracts 2004: Society of Exploration Geophysicists, 2431-2434.
Yilmaz, O., I. Tanir, and C. Gregory, 2001, A unified 3-D seismic workflow: Geophysics,
66
, 1699-1713.
Zhang, G. J., and Z. Q. Zhang, 1998, Application of successive approximation method to the computation of the green's function in axisymmetric inhomogeneous media: IEEE transactions on geoscience and remote sensing,
36
, 732-737.
2022-05-23