Seislet transform and seislet frame
Next:
About this document ...
Up:
Fomel and Liu: Seislet
Previous:
Acknowledgments
Bibliography
Abma, R., and N. Kabir, 2006, 3D interpolation of irregular data with a POCS algorithm: Geophysics,
71
, E91-E97.
Burg, J. P., 1975, Maximum entropy spectral analysis: PhD thesis, Stanford University.
Canales, L. L., 1984, Random noise reduction: 54th Annual International Meeting, SEG, Expanded Abstracts, Session: S10.1.
Candés, E. J., and L. Demanet, 2005, The curvelet representation of wave propagators is optimally sparse: Communications on Pure and Applied Mathematics,
58
, 1472-1528.
Chauris, H., and T. Nguyen, 2008, Seismic demigration/migration in the curvelet domain: Geophysics, S35-S46.
Claerbout, J. F., 1976, Fundamentals of geophysical data processing: Blackwell Scientific Publications.
----, 1992, Earth Soundings Analysis: Processing Versus Inversion: Blackwell Scientific Publications.
----, 2008, Basic Earth imaging: Stanford Exploration Project,
http://sepwww.stanford.edu/sep/prof/
.
Cohen, A., I. Daubechies, and J. Feauveau, 1992, Biorthogonal bases of compactly supported wavelets: Communications on Pure and Applied Mathematics,
45
, 485-560.
Daubechies, I., M. Defrise, and C. D. Mol, 2004, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint: Communications on Pure and Applied Mathematics,
LVII
, 1413-1457.
Dessing, F. J., 1997, A wavelet transform approach to seismic processing: PhD thesis, Delft University of Technology.
Do, M. N., and M. Vetterli, 2005, The contourlet transform: an efficient directional multiresolution image representation: IEEE Transactions on Image Processing,
14
, 2091-2106.
Donoho, D. L., 1995, De-noising by soft-thresholding: IEEE Trans. on Inform. Theory,
41
, 613-627.
Douma, H., and M. V. de Hoop, 2007, Leading-order seismic imaging using curvelets: Geophysics,
72
, S231-S248.
Edelman, A., and H. Murakami, 1995, Polynomial roots from companion matrix eigenvalues: Mathematics of Computation,
64
, 763-776.
Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics,
67
, 1946-1960.
----, 2006, Towards the seislet transform,
in
76th Ann. Internat. Mtg: Soc. of Expl. Geophys., 2847-2850.
----, 2008, Nonlinear shaping regularization in geophysical inverse problems: 78th Annual International Meeting, SEG, Expanded Abstracts, 2046-2051.
Fomel, S., and V. Grechka, 2001, Nonhyperbolic reflection moveout of P waves. An overview and comparison of reasons: Technical Report CWP-372, Colorado School of Mines.
Foster, D. J., C. C. Mosher, and S. Hassanzadeh, 1994, Wavelet transform methods for geophysical applications: 64th Ann. Internat. Mtg, Soc. of Expl. Geophys., 1465-1468.
Guo, K., and D. Labate, 2007, Optimally sparse multidimensional representation using shearlets: SIAM Journal on Mathematical Analysis,
39
, 298-318.
Haldorsen, J. B. U., and P. A. Farmer, 1989, Resolution and NMO-stretch: Imaging by stacking: Geophysical Prospecting,
37
, 479-492.
Herrmann, F. J., and G. Hennenfent, 2008, Non-parametric seismic data recovery with curvelet frames: Geophysical Journal International,
173
, 233-248.
Herrmann, F. J., D. Wang, G. Hennenfent, and P. Moghaddam, 2007, Curvelet-based seismic data processing: a multiscale and nonlinear approach: Geophysics,
73
, A1-A5.
Jensen, A., and A. la Cour-Harbo, 2001, Ripples in mathematics: the discrete wavelet transform: Springer.
Kazemeini, S. H., C. Juhlin, K. Zinck-Jorgensen, and B. Norden, 2009, Application of the continuous wavelet transform on seismic data for mapping of channel deposits and gas detection at the CO2 site, Ketzin, Germany: Geophysical Prospecting,
57
, 111-123.
Liu, Y., and S. Fomel, 2009, Oc-seislet: seislet transform construction with differential offset continuation,
in
79th Ann. Internat. Mtg: Soc. of Expl. Geophys., 3228-3232.
Mallat, S., 2009, A wavelet tour of signal processing: The sparse way: Academic Press.
Marple, S. L., 1987, Digital spectral analysis with applications: Prentice Hall.
Morlet, J., 1981, Sampling theory and wave propagation: 51st Ann. Internat. Mtg, Soc. of Expl. Geophys., Session:S15.1.
Osher, S., M. Burger, D. Goldfarb, J. Xu, and W. Yin, 2005, An iterative regularization method for total variation-based image restoration: Multiscale Modeling & Simulation,
4
, 460-489.
Pennec, E. L., and S. Mallat, 2005, Sparse geometrical image representation with bandelets: IEEE Transactions on Image Processing,
14
, 423-438.
Starck, J. L., E. J. Candés, and D. L. Donoho, 2002, The curvelet transform for image denoising: IEEE Transactions on Image Processing,
11
, 670-684.
Sweldens, W., 1995, The lifting scheme: A new philosophy in biorthogonal wavelet constructions: Wavelet Applications in Signal and Image Processing III, Proc. SPIE 2569, 68-79.
Sweldens, W., and P. Schröder, 1996, Building your own wavelets at home,
in
Wavelets in Computer Graphics: ACM SIGGRAPH Course notes, 15-87.
Thiran, J.-P., 1971, Recursive digital filters with maximally flat group delay: IEEE Transactions on Circuit Theory,
18
, 659-664.
Thorson, J. R., and J. F. Claerbout, 1985, Velocity stack and slant stochastic inversion: Geophysics,
50
, 2727-2741.
Välimäki, V., and T. T. Laakso, 2001, Fractional delay filters - design and applications,
in
Nonuniform sampling: theory and practice: Kluwer Academic/Plenum Publishers, 835-895.
Velisavljevic, V., 2005, Directionlets: anisotropic multi-directional representation with separable filtering: PhD thesis, Ecole Polytechnique Fédérale de Lausanne.
Wapenaar, K., R. Ghose, G. Toxopeus, and J. Fokkema, 2005, The wavelet transform as a tool for geophysical data integration: Integrated Computer-Aided Engineering,
12
, 5-23.
Welland, G., ed., 2003, Beyond wavelets: Academic Press.
Xu, S., Y. Zhang, D. Pham, and G. Lambaré, 2005, Antileakage Fourier transform for seismic data regularization: Geophysics,
70
, V87-V95.
Yin, W., S. Osher, D. Goldfarb, and J. Darbon, 2008, Bregman interative algorithoms for
-minimization with application to compressed sensing: SIAM J. Imaging Sciences,
1
, 143-168.
Zwartjes, P., and A. Gisolf, 2006, Fourier reconstruction of marine-streamer data in four spatial coordinates:
71
, V171-V186.
----, 2007, Fourier reconstruction with sparse inversion: Geophysical Prospecting,
55
, 199-221.
Zwartjes, P., and M. Sacchi, 2007, Fourier reconstruction of nonuniformly sampled, aliased seismic data:
72
, V21-V32.
2013-07-26