next up previous [pdf]

Next: Point diffractor Up: Klokov and Fomel: Optimal Previous: Acknowledgments

Appendix: Hyperbolic reflector in the dip-angle domain

For insight into the appearance of reflector images in the dip-angle domain, let us consider the case of a hyperbolic reflector (Fomel and Kazinnik, 2013). A special property of hyperbolic reflectors is that they can transform to plane dipping reflectors or point diffractors with an appropriate choice of parameters. Reflector depth is given by the function

\begin{displaymath}
z(x)=\sqrt{z_0^2+(x-x_0)^2 \tan^2\beta}\;,
\end{displaymath} (11)

and zero-offset reflection traveltime is given by
\begin{displaymath}
t(y)=\frac{2}{v} \sqrt{z_0^2+(y-x_0)^2 \sin^2\beta}\;.
\end{displaymath} (12)

When the reflector is imaged by time migration in the dip-angle domain (Sava and Fomel, 2003) using velocity $v_m$, point $\{y,t\}$ in the data domain migrates to $\{x_m,t_m\}$ in the image domain according to
$\displaystyle x_m$ $\textstyle =$ $\displaystyle y - \frac{v_m}{2} t \sin{\alpha} = \displaystyle y - \frac{v_m \sin{\alpha}}{v} \sqrt{z_0^2+(y-x_0)^2 \sin^2\beta}\;,$ (13)
$\displaystyle t_m$ $\textstyle =$ $\displaystyle t \cos{\alpha} = \displaystyle \frac{2 \cos{\alpha}}{v} \sqrt{z_0^2+(y-x_0)^2 \sin^2\beta}\;,$ (14)

where $\alpha$ is the migration dip angle. Eliminating $y$ from equations A-3 and A-4, we arrive at the equation
\begin{displaymath}
t_m(x_m) = \frac{2 \cos{\alpha}}{v} \frac{\gamma (x_m-x_...
...n^2{\beta} + \sqrt{(x_m-x_0)^2 \sin^2{\beta}+z_0^2 D}}{D}\;,
\end{displaymath} (15)

where $\gamma=v_m/v$ and $D=1-\gamma^2 \sin^2{\alpha} \sin^2{\beta}$. Equation A-5 describes the shape of the image of the hyperbolic reflector (A-1) in the dip-angle domain.

When the dip of the migrated event, imaged at a correct velocity ($\gamma=1$),

\begin{displaymath}
\tan{\alpha_m} = \displaystyle \frac{v}{2} t_m'(x_m) =
\...
...m-x_0}{\sqrt{(x_m-x_0)^2 \sin^2{\beta}+z_0^2 D}}\right]\;,
\end{displaymath} (16)

is equal to the dip of the image ( $\alpha_m=\alpha$), it also becomes equal to the true dip of the reflector ( $\alpha_m=\alpha_0$), where
\begin{displaymath}
\tan{\alpha_0} = z'(x_m) = \frac{(x_m-x_0) \tan^2{\beta}}{\sqrt{z_0^2+(x-x_0)^2 \tan^2\beta}}\;.
\end{displaymath} (17)

We can specify these conditions for two special cases described next.



Subsections
next up previous [pdf]

Next: Point diffractor Up: Klokov and Fomel: Optimal Previous: Acknowledgments

2014-03-25