next up previous [pdf]

Next: Comparison with known expressions Up: Coefficients of traveltime expansion Previous: Formulas for interval NMO

Formulas for interval quartic coefficients

Similarly to the derivation for $ A_{ii}$ , we have first,

$\displaystyle \psi_{4,0(N)} = \frac{48t^3_{0(N)}a_{1111(N)}-3t_{0(N)}a^2_{11(N)}}{a^4_{11(N)}}~,$ (50)

which can be calculated for interval $ \Psi_{4,0(N)}$ in the $ N$ -th layer using,

$\displaystyle \Psi_{4,0(N)} = \psi_{4,0(N)}- \psi_{4,0(N-1)}~.$ (51)

Subsequently, interval $ A_{1111(N)}$ in the $ N$ -th layer can be computed from,

$\displaystyle A_{1111(N)} = \frac{3T_{0(N)}A^2_{11(N)}+A^4_{11(N)}\Psi_{4,0(N)}}{48T_{0(N)}^3}~,$ (52)

where $ T_{0(N)} = t_{0(N)}-t_{0(N-1)}$ . Equation 52 is similar to the Dix-type formula proposed by Tsvankin and Thomsen (1994) for the VTI case. Similar expressions can be derived for $ A_{2222}$ by considering $ \Psi_{0,4}$ and $ A_{22}$ instead of $ \Psi_{4,0}$ and $ A_{11}$ . To derive the corresponding expression for $ A_{1122}$ , we follow an analogous procedure ,which leads to

$\displaystyle \psi_{2,2(N)} = \frac{8t^3_{0(N)}a_{1122(N)}-t_{0(N)}a_{11(N)}a_{22(N)}}{a^2_{11(N)}a^2_{22(N)}}~.$ (53)

Using

$\displaystyle \Psi_{2,2(N)} = \psi_{2,2(N)} - \psi_{2,2(N-1)}~,$ (54)

$ A_{1122(N)}$ in the $ N$ -th layer can be computed as

$\displaystyle A_{1122(N)} = \frac{T_{0(N)}A_{11(N)}A_{22(N)}+A^2_{11(N)}A^2_{22(N)}\Psi_{2,2(N)}}{8T_{0(N)}^3}~.$ (55)


next up previous [pdf]

Next: Comparison with known expressions Up: Coefficients of traveltime expansion Previous: Formulas for interval NMO

2017-04-14