next up previous [pdf]

Next: Extended Muir-Dellinger Approximations Up: Orthorhombic media Previous: Orthorhombic media

Exact Expressions

As the analog of equation 9, qP waves have the following well-known explicit exact expression for phase velocity in orthorhombic media (Tsvankin, 2012; Schoenberg and Helbig, 1997; Tsvankin, 1997):

$\displaystyle v^2_{phase} = 2\sqrt{\frac{-d}{3}}\cos(\frac{\nu}{3})-\frac{a}{3} ~,\\ $ (40)

where
$\displaystyle \nu$ $\displaystyle =$ $\displaystyle \arccos \left(\frac{-q}{2\sqrt{(-d/3)^3}}\right)~,$  
$\displaystyle q$ $\displaystyle =$ $\displaystyle 2\left(\frac{a}{3}\right)^3 - \frac{ab}{3}+c~,~~~d~~=~~-\frac{a^2}{3} + b~,$  
$\displaystyle a$ $\displaystyle =$ $\displaystyle -(G_{11}+G_{22}+G_{33})~,$  
$\displaystyle b$ $\displaystyle =$ $\displaystyle G_{11}G_{22}+G_{11}G_{33}+G_{22}G_{33}-G^2_{12}-G^2_{13}-G^2_{23}~,$  
$\displaystyle c$ $\displaystyle =$ $\displaystyle G_{11}G^2_{23}+G_{22}G^2_{13}+G_{33}G^2_{12}-G_{11}G_{22}G_{33}-2G_{12}G_{13}G_{23}~,$  

and
$\displaystyle G_{11}$ $\displaystyle =$ $\displaystyle c_{11}n^2_1 + c_{66}n^2_2 + c_{55}n^2_3~,$  
$\displaystyle G_{22}$ $\displaystyle =$ $\displaystyle c_{66}n^2_1 + c_{22}n^2_2 + c_{44}n^2_3~,$  
$\displaystyle G_{33}$ $\displaystyle =$ $\displaystyle c_{55}n^2_1 + c_{44}n^2_2 + c_{33}n^2_3~,$  
$\displaystyle G_{12}$ $\displaystyle =$ $\displaystyle (c_{12}+c_{66})n_1n_2~,$  
$\displaystyle G_{13}$ $\displaystyle =$ $\displaystyle (c_{13}+c_{55})n_1n_3~.$  

Here, $ c_{ij}$ are density-normalized stiffness tensor coefficients, $ n_1 = \sin\theta \cos\phi$ , $ n_2 = \sin\theta \sin\phi$ , $ n_3 = \cos\theta $ , $ \theta $ is zenith phase angle (measured from $ n_3$ ), and $ \phi $ is azimuthal phase angle (measured from $ n_1$ ) in the local orthorhombic frame of reference where the axes $ n_1$ , $ n_2$ , and $ n_3$ are intersections of the corresponding planes of symmetry. The corresponding group-velocity expression can be determined from equation 10 extended to 3D.


next up previous [pdf]

Next: Extended Muir-Dellinger Approximations Up: Orthorhombic media Previous: Orthorhombic media

2017-04-14