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ABSTRACT

Attenuation of seismic waves needs to be taken into account in order to improve
the accuracy of seismic imaging. In viscoacoustic media, reverse time migration
(RTM) can be performed with Q-compensation, which is also known as Q-RTM.
Least-squares RTM (LSRTM) has also been shown to be able to compensate
for attenuation through linearized inversion. However, seismic attenuation may
significantly slow down the convergence rate of the least-squares iterative in-
version process without proper preconditioning. We show that incorporating
attenuation compensation into LSRTM can improve the speed of convergence in
attenuating media, obtaining high-quality images within the first few iterations.
Based on the lowrank one-step seismic modeling operator in viscoacoustic media,
we derive its adjoint operator using non-stationary filtering theory. The proposed
forward and adjoint operators can be efficiently applied to propagate viscoacous-
tic waves and to implement attenuation compensation. Recognizing that, in
viscoacoustic media, the wave equation Hessian may become ill-conditioned, we
propose to precondition LSRTM with Q-compensated RTM. Numerical examples
show that the resulting Q-LSRTM method has a significantly faster convergence
rate than LSRTM, and thus is preferable for practical applications.

INTRODUCTION

Seismic attenuation is caused by the effective anelastic properties of the Earth (Aki
and Richards, 2002; Carcione, 2007), and may lead to poor illumination and mis-
placement of reflectors in a migration image. To directly compensate for seismic
attenuation during reverse time migration (RTM) (Baysal et al., 1983; McMechan,
1983; Whitmore, 1983), Zhang et al. (2010) proposed a viscoacoustic wave equation
involving a pseudo-differential operator based on the constant-Q model (Kjartans-
son, 1979) with decoupled effects of amplitude loss and velocity dispersion. Suh et al.
(2012) extended the operator to vertically transversely isotropic (VTI) media. Bai
et al. (2013) adopted a similar approach for attenuation compensation in RTM, but
used a viscoacoustic wave equation without memory variables. Using fractional Lapla-
cians, Zhu and Harris (2014) proposed a constant-Q viscoacoustic wave equation with
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separate terms accounting for amplitude loss and velocity dispersion, which was fur-
ther applied for Q-compensated RTM using both synthetic and field data (Zhu et al.,
2014; Zhu and Harris, 2015). Fletcher et al. (2012); Sun and Zhu (2015) investigated
stable approaches for Q-compensation in RTM.

The imaging problem can also be cast as an inverse problem, with the objective
of minimizing the L2 norm of the difference between recorded data and predicted
data (Ronen and Liner, 2000). Such approaches are known as least-squares migration
(Nemeth et al., 1999; Tang, 2009; Dai et al., 2011), and more specifically least-squares
RTM (LSRTM) in the context of RTM (Wong et al., 2011; Dai et al., 2012; Dai and
Schuster, 2013; Zhang et al., 2013; Liu et al., 2013; Sun et al., 2014a; Xue et al.,
2014; Hou and Symes, 2015). LSRTM is capable of mitigating imaging artifacts and
enhancing subsurface illumination, and may have a correlative objective function to
relax the amplitude matching requirement (Zhang et al., 2014). Pioneering works
of linearized inversion in viscoacoustic and viscoelastic media have been done by Ri-
bodetti et al. (1995, 2000) using an asymptotic theory and by Blanch and Symes
(1994, 1995) using the wave equation. Recently, Dutta and Schuster (2014) and Sun
et al. (2014b) have shown that LSRTM can be applied for attenuation compensa-
tion in viscoacoustic media. Dutta and Schuster (2014) used the standard linear
solid (SLS) model (Robertsson et al., 1994; Blanch et al., 1995), with a simplified
stress-strain relation and incorporated a single relaxation mechanism (Blanch and
Symes, 1995). Sun et al. (2014b) employed the lowrank one-step method to solve the
constant-Q wave equation, which allows for an efficient formulation involving frac-
tional Laplacians (Carcione, 2010; Zhu and Harris, 2014). The computational cost of
LSRTM depends on the number of iterations, which hinges on the conditioning of the
wave-equation Hessian that it tries to invert. In acoustic media, RTM is an efficient
approximation to the inverse of reverse time de-migration (RTDM), the forward mod-
eling operator, and provides accurate kinematic information of subsurface structures
(Symes, 2008). In viscoacoustic media, however, RTM is a poor approximation to
the inverse of RTDM, because the wave amplitude suffers from attenuation during
both forward and backward propagation (Zhu and Harris, 2014; Sun et al., 2015). As
a result, the wave-equation Hessian becomes ill-conditioned, and iterative LSRTM
suffers from a slow convergence rate. To improve the convergence rate of LSRTM in
viscoacoustic media, we propose to seek for a proper preconditioner that mitigates
the effect of attenuation in the inversion.

In this paper, to construct LSRTM in viscoacoustic media, we use the lowrank
one-step wave extrapolation (Sun et al., 2016) and derive its adjoint operator based
on non-stationary linear filtering theory (Margrave, 1998). Sun et al. (2015) have
successfully applied the lowrank one-step wave extrapolation operator to solve the
constant-Q wave equation with fractional Laplacians. To solve the problem of slow
convergence of LSRTM in viscoacoustic media, we propose to construct a precon-
ditioned formulation by replacing the viscoacoustic RTM operator, i.e. RTM based
on the solution of the viscoacoustic wave equation forward and backward in time,
with a better approximate inverse of the RTDM operator, i.e. the Q-compensated
RTM or Q-RTM (Zhang et al., 2010; Suh et al., 2012; Bai et al., 2013; Zhu et al.,
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2014). Q-RTM involves a modeling operator with separate control over amplitude
and phase, and is designed to compensate for the amplitude loss along the attenuated
wavepaths. As a result, the preconditioned wave-equation Hessian is well-conditioned,
helping the new framework to quickly converge to the true amplitude solution within
only a few iterations. Since the inverted matrix is numerically non-Hermitian, we
adopt the Generalized Minimum Residual (GMRES) algorithm, a Krylov subspace
method (Saad and Schultz, 1986), for iterative inversion. Using a synthetic model, we
test the ability of the proposed Q-LSRTM to dramatically enhancing image quality
at a reasonable cost.

THEORY

Wave extrapolation in viscoacoustic media

We first briefly review the basic theory of lowrank one-step wave extrapolation in
viscoacoustic media, and derive its adjoint operator for applications to RTM and
LSRTM.

A constant-Q model (Kjartansson, 1979) describes an attenuating medium whose
quality factor Q is constant in frequency (but may vary in space), indicating that
the attenuation coefficient is linear in frequency. Zhu and Harris (2014) derived the
following approximate constant-Q wave equation with decoupled fractional Laplacians
for modeling and imaging in viscoacoustic media:

1

c2

∂2P

∂t2
= ∇2P + β1{η(−∇2)γ+1 −∇2}P + β2τ

∂

∂t
(−∇2)γ+1/2P , (1)

where

η(x) = −c2γ(x)
0 ω

−2γ(x)
0 cos(πγ(x)) , (2)

τ(x) = −c2γ(x)−1
0 ω

−2γ(x)
0 sin(πγ(x)) , (3)

c2(x) = c2
0(x) cos2(πγ(x)/2) , (4)

γ(x) = arctan(1/Q(x))/π . (5)

Here γ is a dimensionless parameter that ranges between 0 to 1/2. P (x, t) is the
pressure wavefield, c0(x) is the acoustic velocity model defined at a reference frequency
ω0. The β1 and β2 parameters act like on/off switches that control velocity dispersion
and amplitude loss effects, respectively (Zhu and Harris, 2014). For simplicity of
notation, in the rest of the paper the fractional Laplacian operators are denoted as
L = (−∇2)γ+1 and H = (−∇2)γ+1/2.

Setting both β1 and β2 to one, equation 1 leads to the viscoacoustic dispersion
relation with fractional powers of the wave number:

ω2

c2
= −η|k|2γ+2 − iωτ |k|2γ+1 , (6)
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Solving for ω in equation 6 yields:

ω =
−ip1 + p2

2
, (7)

where:

p1 = τc2|k|2γ+1 , (8)

p2 =
√
−τ 2c4|k|4γ+2 − 4ηc2|k|2γ+2 . (9)

The phase function φ(x,k,∆t) that determines the phase shift of the wavefield for
propagation in time is then defined as

φ(x,k,∆t) ≈ −ip1 + p2

2
∆t . (10)

The one-step wave extrapolation provides an approximate solution to equation 1
by incorporating the phase function defined in equation 10 into the Fourier integral
operator (FIO):

P (x, t+ ∆t) =
∫
P̂ (k, t) eik·x+i φ(x,k,∆t) dk , (11)

where P̂ is the spatial Fourier transform of P . The accuracy of the approximation
increases with smaller ∆t (Fomel et al., 2013). The adjoint of operator in equation 11
can be expressed as

P̂ (k, t) =
∫
P (x, t+ ∆t) e−ik·x−i φ̄(x,k,∆t) dx , (12)

where φ̄ denotes the complex conjugate of φ.

The FIOs introduced in equations 11 and 12 can be efficiently applied using the
lowrank one-step wave extrapolation Sun et al. (2015), which we also refer to as the
lowrank PSPI operator because of its resemblance to the well-known PSPI method
for solving the one-way wave equation (Gazdag and Squazzero, 1984; Kesinger, 1992;
Margrave and Ferguson, 1999). The detailed formulation of lowrank PSPI operator, as
well as the derivation of its adjoint operator, the lowrank NSPS operator, is shown in
the appendix. RTM and LSRTM in viscoacoustic media can therefore be constructed
using the forward and adjoint operators.

Viscoacoustic RTM and RTDM

To obtain a seismic image with an attenuated record from the i-th shot di(xr, t),
where xr denotes the receiver location, viscoacoustic RTM can be carried out in the
following three steps:

1. Forward propagate the source wavefield Si(x, t) by solving

1

c2

∂2Si(x, t)

∂t2
− ηLSi(x, t)− τ

∂

∂t
HSi(x, t) = δ(x− xi)f(t) . (13)
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2. Backward propagate the receiver wavefield Ri(x, t) by injecting the observed
seismic record as the boundary condition Ri(xr, t) = di(xr, t) and solving

1

c2

∂2Ri(x, t)

∂t2
− ηLRi(x, t)− τ

∂

∂t
HRi(x, t) = 0 . (14)

3. Apply the cross-correlation imaging condition (Claerbout, 1985):

I(x) =
∑
i

∑
t

Si(x, t)R̄i(x, t) , (15)

where R̄ denotes the complex conjugate of R (Sun and Fomel, 2013).

Reverse-time demigration (RTDM) in viscoacoustic media can be formulated as
the adjoint of the RTM process:

1. Calculate the source wavefield Si(x, t) in the background velocity model in the
same manner as RTM by solving equation 13.

2. Generate the receiver wavefield Ri(x, t) by using the stacked image I(x) as a
secondary source and solving:

1

c2

∂2Ri(x, t)

∂t2
− ηLRi(x, t)− τ

∂

∂t
HRi(x, t) = I(x)Si(x, t) . (16)

3. Extract the predicted seismic record (denoted by the hat) at receiver locations
xr:

d̂i(xr, t) = Ri(xr, t) . (17)

Note that, in order to make the RTDM adjoint to RTM, the wave extrapolation
operator used to solve equation 16 needs to be the adjoint of the operator used to
solve equation 14. For example, if lowrank PSPI is used to solve equation 14, then
lowrank NSPS (derived in the appendix) needs to be used to solve equation 16. If
we write the RTM process symbolically as m̂ = A∗d, where m̂ is the stacked image,
A∗ is the viscoacoustic RTM operator and ∗ denotes the adjoint, then the RTDM
process corresponds to d̂ = Am, where d̂ represents the predicted data and A is the
viscoacoustic RTDM operator.

Least-squares RTM in viscoacoustic media

LSRTM aims to minimize the misfit between the observed data and predicted data
measured by the quadratic function:

J(m) =
1

2
‖d̂− d‖2

2 =
1

2
‖Am− d‖2

2 . (18)
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Since A is a linear operator, a gradient-based local optimization method, such as the
Conjugate Gradient method (CG), is usually applied to iteratively update the image
(Dai and Schuster, 2013; Xue et al., 2014). J(m) is minimized when m satisfies
(Tarantola, 2005)

m = (A∗A)−1A∗ d . (19)

The square matrix A∗A is known as the wave-equation Hessian, and its condition
number affects the convergence rate of LSRTM implemented as an iterative inversion
(Plessix and Mulder, 2004). In acoustic media, RTM usually provides a good approx-
imation to the inverse of RTDM, and the Hessian matrix is well-conditioned (Symes,
2008). However, in viscoacoustic media, because both RTM and RTDM operators
attenuate seismic waves, the image obtained by the aforementioned algorithm suffers
from twice the amplitude loss accumulated along the reflection wavepath. Therefore,
differently from the pure acoustic case, viscoacoustic RTM provides a poor approxi-
mation to the inverse of viscoacoustic RTDM, which makes the Hessian matrix A∗A
ill-conditioned. In the presence of strong attenuation and without proper precondi-
tioning, this could slow down the convergence rate of an iterative method like CG
and, in practice, may require a prohibitively large number of iterations to achieve a
satisfactory result.

Q-compensated LSRTM using the GMRES method

To compensate for attenuation in seismic images, Zhu et al. (2014) and Sun et al.
(2015) proposed the Q-compensated RTM (Q-RTM). Q-RTM in general can be for-
mulated as follows:

1. Forward propagate the source wavefield Si(x, t) with Q-compensation by solv-
ing:

1

c2

∂2Si(x, t)

∂t2
− ηLSi(x, t) + τ

∂

∂t
HSi(x, t) = δ(x− xi)f(t) . (20)

2. Backward propagate the receiver wavefield Ri(x, t) with Q-compensation by
solving:

1

c2

∂2Ri(x, t)

∂t2
− ηLRi(x, t) + τ

∂

∂t
HRi(x, t) = 0 , (21)

with the boundary condition: Ri(xr, t) = di(xr, t).

3. Apply the imaging condition (equation 15).

Notice the sign reversal in front of τ in equations 20-21 in comparison with equa-
tions 13-14. This reversal aims to recover the attenuated wavefield by undoing phase
distortion and amplifying the amplitude. Practically it may also exponentially in-
crease noise through each time step. A low-pass filter can be applied to stabilize the
extrapolation process. Another robust compensation strategy was developed by Sun
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and Zhu (2015) based on stable division between wavefields. Both the source and re-
ceiver wavefields need to be compensated in order to accumulate compensation along
the entire reflection wavepath. Since Q-RTM is capable of restoring the attenuated
energy in the seismic image (Zhu et al., 2014; Sun et al., 2015), it is reasonable to
expect that Q-RTM is better than viscoacoustic RTM in approximating the inverse
of viscoacoustic RTDM .

We propose to replace the original viscoacoustic RTM A∗ with Q-RTM A∗
c as

the backward operator. The true model defined in equation 19 can be equivalently
expressed as:

m = (A∗
c A)−1A∗

c d . (22)

Additionally, an RTM image may contain low-frequency noise, which can be effi-
ciently removed by a Laplacian filter (Zhang and Sun, 2009). We propose to cascade
the Q-RTM operator with a Laplacian filter to help with the least-squares inversion
and speed up the convergence rate. Correspondingly, the inverted model is expressed
as

m = (LA∗
cA)−1LA∗

cd , (23)

where L denotes the Laplacian operator. Since the operator LA∗
cA is closer to an

identity operator than A∗A, the iterative inversion process will converge faster. Equa-
tion 23 can be viewed as the solution of the preconditioned (weighted) least-squares
system that seeks to minimize

Jp(m) =
1

2
‖P(Am− d)‖2

2 , (24)

which leads to the solution

m = (A∗P∗PA)−1A∗P∗Pd . (25)

Instead of looking for the preconditioner P, we simply replace A∗P∗P with LA∗
c .

Note that, theoretically, the inverted matrix in equation 25 is Hermitian. The new
formulation (equation 23), however, makes the inverted matrix numerically non-
Hermitian. One complication with equation 23 is that because the square matrix be-
ing inverted is no longer Hermitian, iterative methods for Hermitian positive-definite
matrices are not optimal (Saad, 2003). Therefore, we implement a complex-valued
restarted generalized minimum residual algorithm, GMRES(m), which solves a least-
squares system by searching for the vector in the Krylov subspace with minimum
residual (Saad and Schultz, 1986). We refer to the method of solving equation 23
by GMRES(m) as Q-compensated LSRTM or Q-LSRTM. As demonstrated in the
numerical examples of the next section, Q-LSRTM is capable of achieving a signifi-
cantly faster convergence rate than conventional LSRTM, and, in practice, produces
the desired image within only a few iterations.
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(a) (b)

Figure 1: BP gas-cloud model. (a) A portion of the BP 2004 velocity model; (b) the
corresponding quality factor Q model.

Figure 2: Prestack data with attenuation. A total of 31 shots were modeled.
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(a) (b)

(c)

Figure 3: (a) The true reflectivity model; (b) image obtained by dispersion-only RTM
without compensating for amplitude; (c) image obtained by Q-RTM. Note that no
Laplacian filter is applied, and the color scales for RTM and Q-RTM images are
different from that of the true model.

(a) (b)

(c)

Figure 4: The results of the original LSRTM through iterations. (a) after 5 iterations;
(b) after 15 iterations; (c) after 30 iterations.
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(a) (b)

(c)

Figure 5: The results of the LSRTM with Laplacian filter through iterations. (a)
after 5 iterations; (b) after 15 iterations; (c) after 30 iterations.

(a) (b)

(c)

Figure 6: The result of the proposed Q-LSRTM through iterations. (a) after 5 itera-
tions; (b) after 15 iterations; (c) after 30 iterations.
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(a) (b) (c)

Figure 7: Image traces extracted at X = 2500 m from the 30th iteration results
(represented by the blue dashed line) compared with the true model (red solid line).
(a) LSRTM; (b) LSRTM with the Laplacian filter; (c) Q-LSRTM.
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to LSRTM with a Laplacian filter and the solid line corresponds to the proposed
Q-LSRTM.
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NUMERICAL EXAMPLES

To test the convergence rate of Q-LSRTM, we use a portion of the BP 2004 velocity
model (Billette and Brandsberg-Dahl, 2004) and the correspondingQmodel suggested
by Zhu et al. (2014) (Figure 1). The model features a low-velocity, low-Q area which
is assumed to be caused by the presence of a gas chimney. The model has a spatial
sampling rate of 12.5 m along both vertical and horizontal directions. A total of 31
shots with a spacing of 162.5 m have been modeled with attenuation, and the source
is a Ricker wavelet with 22.5 Hz peak frequency (Figure 2). Performing RTM without
compensating for amplitude loss, i.e. using the dispersion-only operator, leads to an
image corresponding to Figure 3b, which suffers from poor illumination below the
gas chimney. In contrast, Q-RTM appears capable of recovering the amplitude at
deeper reflectors (Figure 3c), but the image still exhibits some differences from the
true reflectivity. Note that the dispersion-only RTM image and Q-RTM image have
the same phase but differ in amplitude. Next, we perform LSRTM (equation 19) and
Q-LSRTM (equation 23) through a number of iterations. To test the separate effect
of applying a Laplacian filter without compensating for attenuation, we also perform
LSRTM with a Laplacian operator that removes low frequency artifacts. For fairness
of comparison, all three methods are driven by the GMRES method, and because the
tested model is small enough, they were not run in a restarted fashion. Using the
original LSRTM (Figure 4), the inversion process attempts to remove low frequency
noise and improve the illumination of deeper reflectors. However, at 30th iteration,
the reflector amplitude and sharpness beneath the attenuating area still have not
been recovered. LSRTM with a Laplacian filter (Figure 5) achieves a somewhat
sharper image, but because a Laplacian filter boosts high frequency components in
the image, the reflectors beneath the attenuating zone remain poorly illuminated. In
contrast, the proposed Q-LSRTM method (Figure 6) produces sharper reflectors with
well-balanced illumination, especially in the area beneath the gas chimney using the
same number of iterations. Note that the color scales used in all the three cases are
kept the same as that of the true model (Figure 3a). Figure 7 compares the image
traces extracted at X = 2500 m from the 30th iteration results against the true
model. Clearly, the result obtained by the proposed Q-LSRTM best represents the
true reflectivity, especially at deeper parts beneath the gas chimney (below 800 m
depth).

To measure the convergence rate, we calculate the model residual as the L2 norm
of the misfit between the model calculated at each iteration mk and the true model
m∗, normalized by the L2 norm of the true model:

r =
‖mk −m∗‖2

2

‖m∗‖2
2

. (26)

Figure 8 shows the comparison of convergence rates. With the help of a Laplacian
filter, LSRTM is able to achieve a slightly faster convergence rate at early iterations
than the original LSRTM. The proposed Q-LSRTM, on the other hand, converges sig-
nificantly faster than the other two methods. Convergence is achieved by Q-LSRTM
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within approximately 50 iterations, while the other two methods have not converged
even after 100 iterations. The fast convergence is an important property, because
for large-scale 3D seismic imaging problems only a few iterations can be afforded in
practice.

DISCUSSION

In this work, the GMRES method is used to invert the non-Hermitian matrices. Sim-
ilar to the CG method, the full GMRES method (with no restarts) converges in no
more than n steps where n is the total size of the model. However, the GMRES
method requires additional memory to store the previous stepping directions. In the
numerical examples presented above, because the model space is small enough, no
restarts are needed. However, for large 3D models, restarts might be required for a
large number of iterations, which could compromise global optimality. Fortunately,
the proposed method, as well as other types of preconditioners, is designed to achieve
a satisfying result within only a small number of iterations. In practical applications
where each iteration consumes large computing resources, only a small number of
iterations is usually afforded.
The goal of preconditioning LSRTM in viscoacoustic media using Q-RTM is to allevi-
ate the computational burden on iterative inversion by compensating for attenuation
explicitly in wave propagation. Therefore, the iterations can be spent on removing
migration artifacts and compensating irregularities in subsurface illumination caused
by other reasons, such as acquisition footprint. Due to attenuation, the events of
the reflectors beneath the attenuating zone yield a smaller amplitude compared with
un-attenuated events, and approximately correspond to smaller eigenvalues of the
forward operator (Blanch and Symes, 1994). Inversion routines based on Krylov
subspace methods, such as CG and GMRES, will favor large eigenvalues, which ap-
proximately correspond to shallower and un-attenuated reflectors. This leads to the
observed behavior of LSRTM without Q-compensation, which first focused on improv-
ing shallow reflectors above the attenuation zone. Blanch and Symes (1994) suggested
a simple way of assigning more weights to deeper reflectors, by post-conditioning the
seismic record with an increasing function of time. The proposed method is similar
in spirit but more accurate, in that Q-compensation removes the true effect of atten-
uation in the gradient by accurately compensating for attenuation along the entire
wave path.

CONCLUSIONS

We have introduced a novel way of preconditioning least-squares RTM to achieve a
faster convergence rate in viscoacoustic media. The data-space preconditioner is im-
plicitly defined by the Q-compensated RTM operator, with the goal of recovering am-
plitude loss due to attenuation and removing low frequency artifacts in the gradient.
Since the square matrix to be inverted becomes numerically non-Hermitian, we adopt
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the GMRES algorithm to perform iterative inversion. Our synthetic examples show
that the proposed Q-LSRTM is capable of producing an accurate Q-compensated
image within significantly fewer iterations than LSRTM, and thus is preferable in
application to accurate seismic imaging in attenuating media.
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APPENDIX A: DERIVATION OF THE LOWRANK PSPI
AND NSPS OPERATORS

Let p(x, t) be the seismic wavefield at location x and time t, with the spatial Fourier
transform denoted by P (k, t). The wavefield at the next time step t + ∆t can be
approximated by the Fourier integral operator (Wards et al., 2008; Fomel et al.,
2013):

p(x, t+ ∆t) =
∫
P (k, t) ei φ(x,k,∆t)+ix·k dk , (27)

where φ(x,k,∆t) is the phase function. The mixed-domain operator in equation 27
is also referred to as the one-step wave extrapolation operator (Zhang and Zhang,
2009; Sun and Fomel, 2013). Because the wave extrapolation matrix is complex, it
propagates a complex wavefield with the imaginary part being the Hilbert transform
of the real part:

P (k, t) = Pr ± F [H(pr(x, t))] , (28)

where P and Pr, respectively, denote the complex wavefield and real wavefield, and
F denotes spatial Fourier transform (Zhang and Zhang, 2009).

Converting the dual-domain expression 27 into the space domain, we obtain

p(x, t+ ∆t) =
∫
p(y, t)

∫
ei φ(x,k,∆t)+ik·(x−y) dk dy . (29)

The adjoint form of operator 27 can be written as:

P (k, t) =
∫
p(x, t+ ∆t)e−i φ̄(x,k,∆t)−ix·k dx . (30)
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where φ̄ denotes the complex conjugate of φ. The −iφ̄ term in equation 30 indicates
stepping backward in time. Expressing the dual domain operator 30 in the space
domain and stepping forward in time, we arrive at a different operator:

p(x, t+ ∆t) =
∫
p(y, t)

∫
ei φ(y,k,∆t)+ik·(x−y) dk dy . (31)

The phase function in equation 29 depends on the output space x, and thus repre-
sents a kind of non-stationary combination filter (Margrave, 1998). In comparison,
the phase function appearing in equation 31 depends on the input space y, and leads
to a kind of non-stationary convolution filter. Both operators 29 and 31 apply the
same wave-propagation phase function, φ(x,k,∆t); the one-step low-rank wave ex-
trapolation operator 29 applies the phase function in the wavenumber domain after
forward Fourier transform, whereas the new operator 31 applies the phase function
in the space domain before the inverse Fourier transform. The essential difference
between the two is that the non-stationary convolution has the physical interpre-
tation of scaled, linear superposition of the non-stationary filter impulse responses,
as suggested by Huygens’ principle, whereas non-stationary combination filters do
not have such implications (Margrave, 1998). The mixed-domain operator 29 is an
equivalent to the most accurate limiting case of phase shift plus interpolation (PSPI)
method (Gazdag and Squazzero, 1984; Kesinger, 1992), which has been a popular
choice for one-way wavefield extrapolators. The proposed operator 31 is analogous
to the non-stationary phase shift (NSPS) method (Margrave, 1998; Margrave and
Ferguson, 1999) for one-way wave extrapolation.

The low-rank algorithm introduced by Fomel et al. (2013) is a separable approxi-
mation that selects a set of N representative spatial locations and M representative
wavenumbers, which correspond to rows and columns from the original wave-propag-
ation matrix. The low-rank one-step wave extrapolation uses low-rank decomposition
to approximate the mixed-domain phase function in equation 29:

p(x, t+ ∆t) ≈ (32)
M∑
m=1

W (x,km)

(
N∑
n=1

amn

(∫
eix·kW (xn,k)P (k, t)dk

))
,

whose computational cost effectively equals that of applying N inverse fast Fourier
transforms per time step, where N is the approximation rank and is typically a
number less than ten.

With the help of low-rank decomposition, the computational effort for the new
NSPS method can be made identical to that of the low-rank PSPI wave extrapolation,
by approximating the wave propagation operator appearing in equation 31 with

P (k, t+ ∆t) ≈ (33)
N∑
n=1

W (xn,k)

(
M∑
m=1

amn

(∫
e−ix·kW (x,km)p(x, t)dx

))
.
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Note that, for simplicity of notation, equations 32 and 33 do not include an operation
of the forward and inverse Fourier transforms in place between p(x, t) and P (k, t).

In this appendix we have presented the adjoint operator to lowrank one-step wave
extrapolation. Because the derivation of the adjoint operator is discrete, i.e., using
the lowrank approximation matrices instead of state and adjoint state equations, the
result presented in the appendix has wider applications not limited to the scope of
this paper. For example, in full-waveform inversion applications, where the adjoint
state equation is difficult to obtain, the discrete adjoint operator described in this
appendix can be efficiently applied to calculated the adjoint state variable. This
strategy is usually refered to as discretize then optimize (Betts, 2010).
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