next up previous [pdf]

Next: qS-wave polarization vectors in Up: Review of wave-mode separation Previous: Elastic wave-vector decomposition

Low-rank approximations for wave-vector decomposition operator

For the wave-vector decomposition method, we focus on equation 14 and transform it to the space domain using the inverse Fourier transform as follows (Cheng and Fomel, 2014):

$\displaystyle \mathbf{U}^{\alpha}\mathbf{(x)} = \int e^{i\mathbf{k}\cdot\mathbf...
...mathbf{x},\mathbf{\bar{k}})\mathbf{\widetilde{U}(\bar{k})}\right]d\mathbf{k} ~,$ (15)

where $ \mathbf{\widetilde{U}(k)}$ denotes the unseparated wavefield in the Fourier domain and $ \mathbf{U}^{\alpha}\mathbf{(x)}$ denotes the decomposed wavefield of $ \alpha$ wave mode in the space domain. Equation 15 indicates that the unseparated wavefield is projected onto polarization vector $ \mathbf{a}^{\alpha}(\mathbf{x},\mathbf{\bar{k}})$ of $ \alpha$ wave mode in the Fourier domain and subsequently transformed back to the space domain for the final decomposed wavefield. The elements of matrix $ \mathbf{A}^{\alpha}(\mathbf{x},\mathbf{\bar{k}})$ are given by

$\displaystyle \mathbf{A}^{\alpha}(\mathbf{x},\mathbf{\bar{k}}) = \begin{bmatrix...
...a}_x & a^{\alpha}_z a^{\alpha}_y & a^{\alpha}_z a^{\alpha}_z \\ \end{bmatrix}~,$ (16)

where $ \mathbf{a}^{\alpha}(\mathbf{x},\mathbf{\bar{k}}) = \{a^{\alpha}_x,a^{\alpha}_y,a^{\alpha}_z\}$ and $ x,$ $ y,$ and $ z$ denoting different components.

Applying the low-rank approximation approach (Fomel et al., 2013), each element of $ \mathbf{A}^{\alpha}(\mathbf{x},\mathbf{\bar{k}})$ for a specified $ \alpha$ wave mode in equation 15 and 16 can be approximated as follows (Cheng and Fomel, 2014):

$\displaystyle a^{\alpha}_i a^{\alpha}_j = A^{\alpha}_{ij}(\mathbf{x},\mathbf{\b...
...},\mathbf{\bar{k}}_m)\mathbf{W}_{mn}\mathbf{C}(\mathbf{x}_n,\mathbf{\bar{k}})~,$ (17)

where $ \mathbf{B}(\mathbf{x},\mathbf{\bar{k}}_m)$ and $ \mathbf{C}(\mathbf{x}_n,\mathbf{\bar{k}})$ are mixed-domain matrices with reduced wavenumber and spatial dimensions respectively; $ \mathbf{W}_{mn}$ is a $ M\times N$ matrix with $ M$ and $ N$ representing the rank of this low-rank decomposition. One can view $ \mathbf{B}$ as a submatrix of $ A^{\alpha}_{ij}$ consisting of columns associated with $ {\mathbf{\bar{k}}_m}$ , and $ \mathbf{C}$ as a submatrix of $ A^{\alpha}_{ij}$ consisting of rows associated with $ {\mathbf{x}_n}$ . Physically, this process means that we only consider a selected few representative spatial locations ($ N \ll N_x$ ) and representative wavenumbers ($ M \ll N_x$ ), where $ N_x$ is the size of the model, to build an effective approximation. As a result, the low-rank approximation reduces computational cost by transforming the Fourier integral operator in equation 15 for each component $ i$ and $ j$ denoting $ x, y,$ and $ z$ components to

$\displaystyle \int e^{i\mathbf{k}\cdot\mathbf{x}}A^{\alpha}_{ij}(\mathbf{x},\ma...
...bf{x}_n,\mathbf{\bar{k}})\widetilde{U}_j(\mathbf{k})d\mathbf{k}\right)\right)~.$ (18)

The computational cost of applying equation 18 is equivalent to the cost of $ N$ inverse fast Fourier Transforms (FFT) (Cheng and Fomel, 2014).


next up previous [pdf]

Next: qS-wave polarization vectors in Up: Review of wave-mode separation Previous: Elastic wave-vector decomposition

2017-04-18