An eikonal based formulation for traveltime perturbation with respect to the source location
Next:
Appendix A: Higher-order expansions
Up:
Alkhalifah and Fomel: Source
Previous:
Acknowledgments
Bibliography
Abma, R., J. Sun, and N. Bernitsas, 1999, Antialiasing methods in Kirchhoff migration: Geophysics,
64
, 1783-1792.
Aldridge, D. F., 1994, Linearization of the eikonal equation (short note): Geophysics,
59
, 1631-1632.
Alkhalifah, T., 1995, Gaussian beam depth migration for anisotropic media: Geophysics,
60
, 1474-1484.
----, 2002, Traveltime computation with the linearized eikonal equation for anisotropic media: Geophys. Prosp.,
50
, 373-382.
----, 2010, Efficient traveltime compression for 3D prestack kirchhoff migration: Geophysical Prospecting, in print,
58
.
Alkhalifah, T., and S. Fomel, 2001, Implementing the fast marching eikonal solver: spherical versus Cartesian coordinates: Geophys. Prosp.,
49
, 165-178.
Bender, C. M., and S. A. Orszag, 1978, Advanced mathematical methods for scientists and engineers: McGraw-Hill.
Bevc, D., 1997, Imaging complex structures with semirecursive Kirchhoff migration: Geophysics,
62
, 577-588.
Fomel, S., and J. A. Sethian, 2002, Fast phase-space computation of multiple arrivals: Proceedings of the National Academy of Sciences,
99
, 7329-7334.
Franklin, J. B., and J. M. Harris, 2001, A high-order fast marching scheme for the linearized eikonal equation: Journal of Computational Acoustics,
9
, 1095-1109.
Geoltrain, S., and J. Brac, 1993, Can we image complex structures with first-arrival traveltime?: Geophysics,
58
, 564-575.
Gray, S. H., 2005, Gaussian beam migration of common-shot records: Geophysics,
70
, S71-S77.
Hill, N. R., 1990, Gaussian beam migration: Geophysics,
55
, 1416-1428.
----, 2001, Prestack Gaussian-beam depth migration: Geophysics,
66
, 1240-1250.
Kim, S., 2002, 3-D eikonal solvers: First-arrival traveltimes: Geophysics,
67
, 1225-1231.
Lumley, D. E., J. F. Claerbout, and D. Bevc, 1994, Anti-aliased Kirchhoff 3-D migration: 64th Ann. Internat. Mtg, Soc. of Expl. Geophys., 1282-1285.
Podvin, P., and I. Lecomte, 1991, Finite difference computation of traveltimes in very contrasted velocity models: A massively parallel approach and its associated tools: Geophysical Journal International,
105
, 271-284.
Popovici, A. M., and J. Sethian, 2002, 3-D imaging using higher order fast marching traveltimes: Geophysics,
67
, 604-609.
Qian, J., and W. W. Symes, 2002, An adaptive finite-difference method for traveltimes and amplitudes: Geophysics,
67
, 167-176.
Sethian, J. A., 1996, A fast marching level set method for monotonically advancing fronts: Proc. Nat. Acad. Sci.,
93
, 1591-1595.
Sethian, J. A., and A. M. Popovici, 1999, 3-D traveltime computation using the fast marching method: Geophysics,
64
, 516-523.
Slotnick, M. M., 1959, Lessons in Seismic Computing: Soc. of Expl. Geophys.
(Edited by R. A. Geyer).
Symes, W. W., and J. Qian, 2003, A slowness matching Eulerian method for multivalued solutions of eikonal equations: Journal of Scientific Computing,
19
, 501-526.
van Trier, J., and W. W. Symes, 1991, Upwind finite-difference calculation of traveltimes: Geophysics,
56
, 812-821.
Versteeg, R., 1994, The Marmousi experience: Velocity model determination on a synthetic complex data set: The Leading Edge,
13
, 927-936.
Vidale, J. E., 1988, Finite-difference calculation of traveltimes: Bull. Seis. Soc. Am.,
6
, 2062–2076.
----, 1990, Finite-difference calculation of traveltimes in three dimensions: Geophysics,
55
, 521-526.
Zhao, H.-K., 2005, A fast sweeping method for eikonal equations: Mathematics of Computation,
74
, 603-627.
2013-04-02