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INTRODUCTION

Wouldn’t it be great if I could take signals of 10-30 Hz bandwidth from 100 different
offsets and construct a zero-offset trace with 5-100 Hz bandwidth? This would not violate
Shannon’s sampling theorem which theoretically allows us to have a transform from 100
signals of 20 Hz bandwidth to one signal at 2000 Hz bandwidth. The trouble is that simple
NMO is not such a transformation. Never-the-less, if the different offsets really did give us
any extra information, we should be able to put the information into extra bandwidth. Let
us consider noise free synthetic data and see if we can come up with a model where this
could happen.

FITTING FRAMEWORK

The operator of interest is the one that creates many offsets of seismic data from a zero-offset
model space.

z is a white seismic trace (model) at zero-offset

dj is a red seismic trace (data) at nonzero-offset xj

L is a seismic band pass filter

Hj sprays along hyperbola using a known, rough v(z)

Hj sprays using a known, smooth v(z)

The operator of interest is the one that transforms z to all the data dj at all of the offsets
xj .

dj = LHjz (1)

Here is a trivial idea: Estimates ẑj of z from data dj at different offsets xj have different
spectral bands because of NMO stretch. Wide offsets create low frequency. Trouble is, these
low frequencies add little spectral bandwidth. We want extra high frequencies too.

We know a simple two-step process where one offset can be obtained from another: First
moveout for one offset. Then inverse moveout for the other offset. Whenever such offset
continuation works, extra offsets cannot bring us extra information. Extra traces give only
redundancy.
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Inversion theory says if the transformation has no null space we should be able to solve
for everything. Since in practice we cannot seem to obtain that extra bandwidth, it seems
that the operator LHj has a large null space, about equal in size to the trace length times
(the number of offsets minus one).

ROUGH VELOCITY(Z)

Taking velocity to be a rough (bumpy) function of depth, different offset traces might be
fundamentally different thus providing different information (i.e. more information hence
potentially more bandwidth). The bumpy velocity model seems artificial since it requires
to be known a rough velocity as a function depth. Never-the-less, the idea could be helpful
because we sometimes have well logs, or we might later learn how to bootstrap our velocity
estimate from a smooth velocity to a rougher one.

Many people think about rough impedance. Here we consider a rough interval velocity.

ROUGH V(Z) MAKES TAU(T) MULTIVALUED

According to the Dix approximation, travel time t(τ) is a unique function of vertical travel
time τ because

t2 = τ2 + x2/v(τ)2 (2)

The reverse is not true, however, τ(t) can be a multivalued function of t, and is especially
likely to be so where v(τ) is a rough function of τ . When τ(t) is a multivalued function
of t the process of offset continuation breaks down. Then extra offsets are providing extra
information. We don’t yet know if the extra information is a small amount or a large amount
or whether that extra information is uniformly or locally distributed. Figure 1 shows an
example.

Figure 1 shows two kinds of multivaluedness in the transformation. First is the familiar
kind that arises whenever dv/dz > 0 where travel times of shallow waves cross those of deep
waves. Let us place a line through the broad maxima in t(τ) at about t = 2.5τ for all x. In
a constant velocity earth, the ratio t/τ = 2.5 corresponds to a propagation angle cos θ = τ/t
or about θ = 66◦. Thus, a wave with average angle greater than θ = 66◦ generally arrives
at the same time and offset as another wave with an average angle less than θ = 66◦.

The second way of being multivalued is less familiar and hence more interesting, the
roughness in the t(τ) transformation. We see this roughness does give rise to multivalued-
ness. Disappointingly, the multivaluedness is not found everywhere but mainly along the
θ = 66◦ trend. We have not yet answered how much extra information we can obtain from
this. Clearly though, if multivaluedness is what makes different offsets give us different
information, it is along this “mute-line” θ = 66◦ trend where we must look.

Let us find the high frequency. Where does an observable (low) frequency on the t axis
map to a high frequency on the τ axis? It happens where a long region on the t axis maps
to a short region on the τ axis, in other words, where the slope dt/dτ is greatest. This
is the opposite of usual NMO in the neighborhood of the diagonal asymptote in Figure 1
where dt/dτ < 1. From the figure, we see the possibility for frequency boosting does not
arise from the roughness in velocity but just beneath the water bottom at any offset, i.e.,
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Figure 1: Right shows t(τ) for many offsets.
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at the greatest angles. Since dt/dτ is negative there, it gives a kind of upside-down image.
To understand this image, think of head waves where the deepest layer is fastest and hence
has the earliest arrival with shallower layer arrivals coming later.

It is possible the Dix approximation is breaking down here, a concern that requires
further study. Accurate reflection seismograms in this region are easy to make with the
phase shift method. Getting correct head waves is more complicated.

FURTHER STEPS

Each offset xj allows us to make a different estimate of the earth model zj . There are two
possiblities:

i.e. zj 6= zj+1.
ẑj = H′jL

′dj (3)

ẑj = H′jL
′dj (4)

We should plot ẑj as a function of j. We should also plot ẑj − ẑj−1 as a function of j and
see if we can find any higher temporal frequencies.
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