next up previous [pdf]

Next: Introduction Up: Reproducible Documents

Published as Geophysics, 68, 1032-1042(2003)

Asymptotic pseudounitary stacking operators

Sergey Fomel
sergey@sep.stanford.edu


Abstract:

Stacking operators are widely used in seismic imaging and seismic data processing. Examples include Kirchhoff datuming, migration, offset continuation, DMO, and velocity transform. Two primary approaches exist for inverting such operators. The first approach is iterative least-squares optimization, which involves the construction of the adjoint operator. The second approach is asymptotic inversion, where an approximate inverse operator is constructed in the high-frequency asymptotics. Adjoint and asymptotic inverse operators share the same kinematic properties, but their amplitudes (weighting functions) are defined differently. This paper describes a theory for reconciling the two approaches. I introduce a pair of the asymptotic pseudo-unitary operators, which possess both the property of being adjoint and the property of being asymptotically inverse. The weighting function of the asymptotic pseudo-unitary stacking operators is shown to be completely defined by the derivatives of the operator kinematics. I exemplify the general theory by considering several particular examples of stacking operators. Simple numerical experiments demonstrate a noticeable gain in efficiency when the asymptotic pseudo-unitary operators are applied for preconditioning iterative least-squares optimization.




next up previous [pdf]

Next: Introduction Up: Reproducible Documents

2013-03-03