...P
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mail Stop 50A-1148, Berkeley, CA 94720, USA
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...P
Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, USA
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...me,GEO68-02-07180732[*]
To our knowledge, the first derivation of the revised offset continuation equation was accomplished by Joseph Higginbotham of Texaco in 1989. Unfortunately, Higginbotham's derivation never appeared in the open literature.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... point[*]
Note that the scattering point $\bf{x}$ plays the role of a set of parameters in the partial differential equation for $\tau_{sr}$. To pass from a two-dimensional in-plane traveltime to a three-dimensional traveltime, one need only replace $z^2$ with $x_2^2 + z^2$. The role of $x = x_1$ remains unchanged in the solution.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.