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INTRODUCTION

Traveltime computation is an important part of seismic imaging algorithms. Conventional
implementations of Kirchhoff migration require precomputing traveltime tables or include
traveltime calculation in the innermost computational loop . The cost of traveltime com-
putations is especially noticeable in the case of 3-D prestack imaging where the input data
size increases the level of nesting in computational loops.

The eikonal differential equation is the basic mathematical model, describing the trav-
eltime (eikonal) propagation in a given velocity model. Finite-difference solutions of the
eikonal equation have been recognized as one of the most efficient means of traveltime com-
putations (Vidale, 1990; van Trier and Symes, 1991; Popovici, 1991). The major advantages
of this method in comparison with ray tracing techniques include an ability to work on reg-
ular model grids, a complete coverage of the receiver space, and a fair numerical robustness.
The most common implementations of the finite-difference eikonal equation compute the
first-arrival traveltimes, though frequency-dependent enhancements (Biondi, 1992; Nichols,
1994) can extend the method to computing the most energetic arrivals. The major numer-
ical complexity of the finite-difference eikonal computations arises from the fundamental
non-linearity of the eikonal equation. The numerical complexity is related not only to the
direct cost of the computation, but also to the accuracy and stability of finite-difference
schemes.

It is important to note that the current practice of seismic imaging is not limited to a
single migration. Moreover, it is repeated migrations, with velocity analysis and refinement
of the velocity model at each step, that take most of the computational effort. When the
changes in the velocity model at each step are small compared to the initial model, it is
appropriate to linearize the eikonal equation with respect to the slowness and traveltime
perturbations. Mathematically, the linearized eikonal equation corresponds precisely to the
linearization assumption, commonly used in traveltime tomography.

In this paper, I propose an algorithm of finite-difference traveltime computations, based
on an iterative linearization of the eikonal equation. The algorithm takes advantage of an
implicit finite-difference scheme with superior stability and accuracy properties. I test the
algorithm on a simple synthetic example and discuss its possible applications in residual
traveltime computation, interpolation, and tomography.
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THE LINEARIZED EIKONAL EQUATION

The eikonal equation, describing the traveltime propagation in an isotropic medium, has
the form

(∇τ)2 = n2(x, y, z) , (1)

where τ(x, y, z) is the traveltime (eikonal) from the source to the point with the coordinates
(x, y, z), and n is the slowness at that point (the velocity v equals 1/n.) In Appendix A, I
review a basic derivation of the eikonal and transport equations. To formulate a well-posed
initial-value problem on equation (1), it is sufficient to specify τ at some closed surface and
to choose one of the two branches of the solution (the wave going from or to the source.)

Equation (1) is nonlinear. The nonlinearity is essential for producing multiple branches
of the solution. Multi-valued eikonal solutions can include different types of waves (direct,
reflected, diffracted, head, etc.) as well as different branches of caustics. To linearize
equation (1), we need to assume that an initial estimate τ0 of the eikonal τ is available.
The traveltime τ0 corresponds to some slowness n0, which can be computed from equation
(1) as

n0 = |∇τ0| . (2)

Let us denote the residual traveltime τ − τ0 by τ1 and the residual slowness n− n0 by n1.
With these definitions, we can rewrite equation (1) in the form

(∇τ0 +∇τ1)2 = (∇τ0)2 + 2∇τ0 · ∇τ1 + (∇τ1)2 = (n0 + n1)2 = n2
0 + 2n0 n1 + n2

1 , (3)

or, taking into account equality (2),

2∇τ0 · ∇τ1 + (∇τ1)2 = 2n0 n1 + n2
1 . (4)

Neglecting the squared terms, we arrive at the equation

∇τ0 · ∇τ1 = n0 n1 , (5)

which is the linearized version of the eikonal equation (1). The accuracy of the linearization
depends on the relative ratio of the slowness perturbation n1 and the true slowness model n.
Though it is difficult to give a quantitative estimate, the ratio of 10% is generally assumed
to be a safe upper bound.

The intimate connection of the linearized eikonal equation and traveltime tomography
is discussed in Appendix B.

ALGORITHM

Linearization of the eikonal equation suggests the following algorithm of traveltime compu-
tation:

1. Start with an initial traveltime field τ0. The initial traveltime may be the result of
a previous computation or (for simple models) the result of an approximate analytic
evaluation.

2. Compute the finite-difference gradient ∇τ0 and the corresponding slowness model n0

with equation (2).
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3. Compute the slowness perturbation n1 as the difference between the true slowness
model n and n0. Exit the computation if the perturbation is smaller than the desired
accuracy.

4. Solve numerically equation (5) for the traveltime perturbation τ1.

5. Update the traveltime field τ0 by adding τ1 to it.

6. Repeat the loop.

Equation (5) can be solved numerically with a simple explicit upwind finite-difference
method.

NUMERICAL TEST

For the first numerical test, I used a model with a smooth anomaly inside a constant slow-
ness background. The initial traveltime was computed analytically, using the background
slowness. The result of the computation is shown in Figure 1. The computation involved 5
re-linearization cycles.

Figure 1: The traveltime contours
for a smooth anomaly, computed
by the linearized eikonal solver.
The background slowness is 1 s/km.
The maximum anomaly slowness is
2.25 s/km. The wave source is in on
the top plane of the model.

The result shows the expected behavior of the wavefronts. It agrees with the result
of a direct eikonal computation, shown in Figure 2. The direct computation was done
with Mihai Popovici’s TTGES eikonal solver, which has outstanding efficiency and stability
properties. Obviously, more tests are required to evaluate the comparative performance of
the algorithm and the limits of its practical applicability. The discussion section contains
some speculations about the perspective usage of the linearized algorithm.
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Figure 2: The traveltime contours
for a smooth anomaly, computed by
the exact eikonal solver. The in-
put and plotting parameters are the
same as in the preceeding figure.

DISCUSSION

Although the first numerical experiments have been too incomplete for drawing any solid
conclusions, it is interesting to discuss the possible applications of the linearized eikonal.

Multi-valued traveltimes Conventional eikonal solvers usually force the choice of a par-
ticular branch of the multi-valued traveltime, most commonly the first-arrival branch.
However, in some cases other branches may in fact be more useful for imaging or
velocity estimation (Gray and May, 1994). When the linearization assumption is cor-
rect, the linearized eikonal should follow the branch of the initial traveltime. This
branch does not have to be the first arrival. It can correspond to any other arrival,
such as reflected waves or multiple reflections.

Spherical Coordinates Though the eikonal equation itself does not favor any particular
direction, its solution for the case of a point source lands more naturally into a spher-
ical coordinate system. van Trier and Symes (1991), Popovici (1991), Fowler (1994),
and Schneider (1995) presented upwind finite-difference eikonal schemes based on a
spherical computational grid. To use the linearized equation (5) on such a grid, it is
necessary to rewrite the gradient operator in the spherical coordinates, as follows:

∇τ =

{
∂τ

∂r
,

1

r

∂τ

∂θ
,

1

r sin2 θ

∂τ

∂φ

}
.

.

Interpolation One of the most natural applications for the linearized eikonal is inter-
polation of traveltimes. Interpolating regularly gridded input (such as subsampled
traveltime tables) reduces to masked inversion of equation (5). Interpolating irregular
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input (such as the result of a ray tracing procedure) reduces to regularized inversion.
In both cases, a simpler way of traveltime binning would be required to initiate the
linearization.

Tomography Tomographic velocity estimation is possible when the input traveltime data
corresponds to a collection of sources. In this case, we can reduce the linearized
traveltime inversion to the system of equations

n
(1)
0 · ∇τ

(1)
1 = n

(2)
0 · ∇τ

(2)
1 = · · · = s1 . (6)

Here τ
(i)
1 stands for the traveltime from source i. Equations (6) are additionally

constrained by the known values of the traveltime fields at the receiver locations.

Amplitudes The amplitude transport equation, briefly reviewed in Appendix A, has the
form (A-4). Introducing the logarithmic amplitude J = −ln(A/A0), where A0 is the
constant reference, we can rewrite this equation in the form

2∇τ · ∇J = ∆τ . (7)

The left-hand side of equation (7) has exactly the same form as the left-hand side
part of the linearized eikonal equation (5). This suggests reusing the traveltime com-
putation scheme for amplitude calculations. The amplitude transport equation is
linear. However, it explicitly depends on the traveltime. Therefore, the amplitude
computation needs to be coupled with the eikonal solution.

Anisotropy In a recent paper, Alkhalifah (1997) proposed a simple eikonal-type equation
for seismic imaging in vertically transversally-isotropic media. Alkhalifah’s equation
should be suitable for linearization, either in the normal moveout velocity VNMO or in
the dimensionless anisotropy parameter η. This untested opportunity looks promising
because of the validity of the weak anisotropy assumption in many regions of the world.

CONCLUSIONS

I have presented a finite-difference method of traveltime computations, based on the lin-
earized eikonal equation. Preliminary numerical experiments show that the method is as
simple and robust as can be expected from the theory. The required assumption is that a
reasonable estimate of the traveltime is available prior to linearization. Such an estimate
may result from the computation in a different velocity model, with a different method
(e.g., ray tracing), or by an analytic evaluation.

In the situations where the underlying assumption is valid, the linearized approach may
allow us

• to employ unconditionally stable implicit finite-difference schemes with an easy control
of the numerical stability,

• to parallelize the essential parts of the algorithm with minimum effort,

• to compute branches of the multi-valued traveltime other than the first arrival,

• to connect traveltime computations with tomographic velocity estimation,
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• to couple traveltime and amplitude computations.

Future research is necessary to confirm these expectations.

ACKNOWLEDGMENTS

I thank Biondo Biondi for interesting discussions on the traveltime computation problem
and its applications. The TTGES eikonal solver that I used for testing was kindly made
available to SEP by Mihai Popovici of 3DGeo.

REFERENCES

Alkhalifah, T., 1997, Acoustic approximations for processing in transversely isotropic media:
submitted to Geophysics.

Biondi, B., 1992, Solving the frequency-dependent eikonal equation: 62nd Ann. Internat.
Mtg, Soc. of Expl. Geophys., 1315–1319.

Fowler, P. J., 1994, Finite-difference solutions of the 3-D eikonal equation in spherical
coordinates: 64th Ann. Internat. Mtg, Soc. of Expl. Geophys., 1394–1397.

Gray, S. H., and W. P. May, 1994, Kirchhoff migration using eikonal equation traveltimes:
Geophysics, 59, 810–817.

Lavrentiev, M. M., V. G. Romanov, and V. G. Vasiliev, 1970, Multidimensional inverse
problems for differential equations: Springer-Verlag, volume 167 of Lecture Notes in
Mathematics.

Nichols, D. E., 1994, Imaging complex structures using band-limited Green’s functions:
PhD thesis, Stanford University.

Popovici, M., 1991, Finite difference travel time maps, in SEP-70: Stanford Exploration
Project, 245–256.

Schneider, W. A., 1995, Robust and efficient upwind finite-difference traveltime calculations
in three dimensions: Geophysics, 60, 1108–1117.

van Trier, J., and W. W. Symes, 1991, Upwind finite-difference calculation of traveltimes:
Geophysics, 56, 812–821.
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APPENDIX A

A SIMPLE DERIVATION OF THE EIKONAL AND TRANSPORT
EQUATIONS

In this Appendix, I remind the reader how the eikonal equation is derived from the wave
equation. The derivation is classic and can be found in many popular textbooks. See, for
example, (Červeny et al., 1977).
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Starting from the wave equation,

∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2
= n2(x, y, z)

∂2P

∂t2
, (A-1)

we introduce a trial solution of the form

P (x, y, t) = A(x, y, z)f(t− τ(x, y, z)) , (A-2)

where τ is the eikonal, and A is the wave amplitude. The waveform function f is assumed
to be a high frequency (discontinuous) signal. Substituting solution (A-2) into equation
(A-1), we arrive at the constraint

∆Af − 2∇A · ∇τf ′ −A∆τf ′ +A (∇τ)2 f ′′ = n2Af ′′ . (A-3)

Here ∆ ≡ ∇2 denotes the Laplacian operator. Equation (A-3) is as exact as the initial wave
equation (A-1) and generally difficult to satisfy. However, we can try to satisfy it asymp-
totically, considering each of the high-frequency asymptotic components separately. The
leading-order component corresponds to the second derivative of the wavelet f ′′. Isolating
this component, we find that it is satisfied if and only if the traveltime function τ(x, y, z)
satisfies the eikonal equation (1).

The next asymptotic order corresponds to the first derivative f ′. It leads to the amplitude
transport equation

2∇A · ∇τ +A∆τ = 0 . (A-4)

The amplitude, defined by equation (A-4), is often referred to as the amplitude of the
zero-order term in the ray series. A series expansion of the function f in high-frequency
asymptotic components produces recursive differential equations for the terms of higher
order. In practice, equation (A-4) is sufficiently accurate for describing the major amplitude
trends in most of the cases. It fails, however, in some special cases, such as caustics and
diffraction.

APPENDIX B

CONNECTION OF THE LINEARIZED EIKONAL EQUATION AND
TRAVELTIME TOMOGRAPHY

The eikonal equation (1) can be rewritten in the form

n · ∇τ = n , (B-1)

where n is the unit vector, pointing in the traveltime gradient direction. The integral
solution of equation (B-1) takes the form

τ =

∫
Γ(n)

ndl , (B-2)

which states that the traveltime τ can be computed by integrating the slowness n along the
ray Γ(n), tangent at every point to the gradient direction n.
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Similarly, we can rewrite the linearized eikonal equation (5) in the form

n0 · ∇τ1 = n1 , (B-3)

where n0 is the unit vector, pointing in gradient direction for the initial traveltime τ0. The
integral solution of equation (B-3) takes the form

τ1 =

∫
Γ(n0)

n1dl , (B-4)

which states that the traveltime perturbation τ1 can be computed by integrating the slowness
perturbation n1 along the ray Γ(n0), defined by the initial slowness model n0. This is exactly
the basic principle of traveltime tomography.

I have borrowed this proof from Lavrentiev et al. (1970), who used linearization of the
eikonal equation as the theoretical basis for traveltime inversion.
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