Modeling of pseudo-acoustic P-waves in orthorhombic media with a lowrank approximation
Next:
About this document ...
Up:
Song & Alkhalifah: Orthorhombic
Previous:
Acknowledgments
Bibliography
Alkhalifah, T., 1998, Acoustic approximations for processing in transversely isotropic media: Geophysics,
63
, 623-631.
----, 2000, An acoustic wave equation for anisotropic media: Geophysics,
65
, 1239-1250.
----, 2003, An acoustic wave equation for orthorhombic anisotropy: Geophysics,
68
, 1169-1172.
Alkhalifah, T., and I. Tsvankin, 1995, Velocity analysis for transversely isotropic media: Geophysics,
60
, 1550-1566.
Bale, R. A., 2007, Phase-shift migration and the anisotropic acoustic wave equation: 69th Annual EAGE Meeting, EAGE, Expanded Abstracts, C021.
Bednar, J., 2005, A brief history of seismic migration: Geophysics,
70
, 3MJ-20MJ.
Chapman, C., 2004, Fundamentals of seismic wave propagation: Cambridge University Press.
Chu, C., and P. L. Stoffa, 2011, Application of normalized pseudo-Laplacian to elastic wave modeling on staggered grids: Geophysics,
76
, T113-T121.
Dellinger, J., and F. Muir, 1988, Imaging reflections in elliptically anisotropic media: Geophysics,
53
, 1616-1618.
Dellinger, J., F. Muir, and M. Karrenbach, 1993, Anelliptic approximations for TI media: Jour. Seis. Expl.,
2
, 23-40.
Du, X., R. P. Fletcher, and P. J. Fowler, 2010, Pure P-wave propagators versus pseudo-acoustic propagators for RTM in VTI media: 72nd Annual EAGE Meeting, EAGE, Expanded Abstracts, C013.
Duveneck, E., and P. M. Bakker, 2011, Stable P-wave modeling for reverse-time migration in tilted TI media: Geophysics,
76
, S65-S75.
Duveneck, E., P. Milcik, P. M. Bakker, and C. Perkins, 2008, Acoustic VTI wave equations and their application for anisotropic reverse-time migration: 78th Ann. Internat. Mtg., Soc. Expl. Geophys., 2186-2190.
Engquist, B., and L. Ying, 2009, A fast directional algorithm for high frequency acoustic scattering in two dimensions: Commun. Math. Sci.,
7
, 327-345.
Etgen, J., 1989, Accurate wave equation modeling,
in
SEP-60: Stanford Exploration Project, 131-148.
Etgen, J., and S. Brandsberg-Dahl, 2009, The pseudo-analytical method: application of pseudo-Laplacians to acoustic and acoustic anisotropic wave propagation: 79nd Annual International Meeting, SEG, Expanded Abstracts, 2552-2556.
Etgen, J., S. H. Gray, and Y. Zhang, 2009, An overview of depth imaging in exploration geophysics: Geophysics,
74
, WCA5-WCA17.
Fletcher, R. P., X. Du, and P. J. Fowler, 2009, Reverse time migration in tilted transversely isotropic (TTI) media: Geophysics,
74
, WCA179-WCA187.
Fomel, S., 2004, On anelliptic approximations for qP velocities in VTI media: Geophysical Prospecting,
52
, 247-259.
Fomel, S., L. Ying, and X. Song, 2010, Seismic wave extrapolation using a lowrank symbol approximation: 80th Ann. Internat. Mtg., Soc. Expl. Geophys., 3092-3096.
----, 2012, Seismic wave extrapolation using lowrank symbol approximation: Geophysical Prospecting, doi: 10.1111/j.1365-2478.2012.01064.x.
Fowler, P. J., X. Du, and R. P. Fletcher, 2010, Coupled equations for reverse time migration in transversely isotropic media: Geophysics,
75
, S11-S22.
Fowler, P. J., and R. King, 2011, Modeling and reverse time migration of orthorhombic pseudo-acoustic P-waves: 81th Ann. Internat. Mtg., Soc. Expl. Geophys., 190-195.
Fowler, P. J., and C. Lapilli, 2012, Generalized pseudospectral methods for modeling and reverse-time migration in orthorhombic media: 74th Annual EAGE Meeting, EAGE, Expanded Abstracts, AO22.
Golub, G. H., and C. F. Van Loan, 1996, Matrix computations: John Hopkins.
Grechka, V., L. Zhang, and J. W. Rector, 2004, Shear waves in acoustic anisotropic media: Geophysics,
69
, 576-582.
Helbig, K., 1983, Elliptical anisotropy—its significance and meaning: Geophysics,
48
, 825-832.
Liu, F., S. A. Morton, S. Jiang, L. Ni, and J. P. Leveille, 2009, Decoupled wave equations for P and SV waves in an acoustic VTI media: 79th Ann. Internat. Mtg., Soc. Expl. Geophys., 2844-2848.
Muir, F., 1985, A practical anisotropic system: SEP-44, 55-58.
Song, X., and S. Fomel, 2011, Fourier finite-difference wave propagation: Geophysics,
76
, T123-T129.
Song, X., S. Fomel, and L. Ying, 2013, Lowrank finite-differences and lowrank Fourier finite-differences for seismic wave extrapolation in the acoustic approximation: Geophysical Journal International, doi: 10.1093/gji/ggt017.
Song, X., S. Fomel, L. Ying, and T. Ding, 2011, Lowrank finite-differences for wave extrapolation: 81th Ann. Internat. Mtg., Soc. Expl. Geophys., 3372-3376.
Soubaras, R., and Y. Zhang, 2008, Two-step explicit marching method for reverse time migration: 78th Ann. Internat. Mtg., Soc. Expl. Geophys., 2272-2276.
Thomsen, L., 1986, Weak elastic anisotropy: Geophysics,
51
, 1954-1966.
Tsvankin, I., 1997, Anisotropic parameters and P-wave velocity for orthorhombic media: Geophysics,
62
, 1292-1309.
----, 2005, Seismic signature and analysis of reflection data in anisotropic media: Elsevier Science.
Tsvankin, I., and V. Grechka, 2011, Seismology of azimuthally anisotropic media and seismic fracture characterization: Society of Exploration Geophysicists.
Yoon, K., S. Suh, J. Ji, J. Cai, and B. Wang, 2010, Stability and speedup issues in TTI RTM implementation: 80th Ann. Internat. Mtg., Soc. Expl. Geophys., 3221-3225.
Zhan, G., R. C. Pestana, and P. L. Stoffa, 2012, Decoupled equations for reverse time migration in tilted transversely isotropic media: Geophysics,
77
, T37-T45.
Zhang, H., G. Zhang, and Y. Zhang, 2009, Removing s-wave noise in TTI reverse time migration: 79th Ann. Internat. Mtg., Soc. Expl. Geophys., 2849-2853.
Zhang, H., and Y. Zhang, 2011, Reverse time migration in vertical and tilted orthorhombic media: 81th Ann. Internat. Mtg., Soc. Expl. Geophys., 185-189.
Zhang, Y., and G. Zhang, 2009, One-step extrapolation method for reverse time migration: Geophysics,
74
, A29-A33.
Zhang, Y., H. Zhang, and G. Zhang, 2011, A stable TTI reverse time migration and its implementation: Geophysics,
76
, WA3-WA9.
2013-06-25