Seismic data analysis using local time-frequency decomposition |
The Fourier series is by definition an expansion of a function in terms of a sum of sines and cosines. Letting a causal signal, , be in range of , the Fourier series of the signal is given by
The notion of a Fourier series can also be extended to complex coefficients as follows:
Nonstationary regression allows the coefficients to change with . In the linear notation, can be obtained by solving the least-squares minimization problem
We use shaping regularization (Fomel, 2007b) instead of Tikhonov's regularization to constrain the least-squares inversion. Shaping is a general method for imposing constraints by explicit mapping the estimated model to the desired model, eg., smooth model. Instead of trying to find and specify an appropriate regularization operator, the user of the shaping-regularization algorithm specifies a shaping operator, which is often easier to design.
The absolute value of time-varying coefficients provides a time-frequency representation, and equation 2 provides the inverse calculation. In the discrete form, a range of frequencies can be decided by the Nyquist frequency (Cohen, 1995) or by the user's assignment. In a somewhat different approach, Liu et al. (2009) minimized the error between the input signal and each frequency component independently. Their algorithm and the proposed algorithm are equivalent when the decomposition is stationary (or using a very large shaping radius), because they both reduce to the regular Fourier transform. In the case of nonstationarity, their approach does not guarantee invertability, because it processes each frequency independently.
Seismic data analysis using local time-frequency decomposition |