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ABSTRACT

In seismic data processing, random noise seriously affects the seismic data quality
and subsequently the interpretation. This study aims to increase the signal-to-
noise ratio by suppressing random noise and improve the accuracy of seismic data
interpretation without losing useful information. Hence, we propose a structure-
oriented polynomial fitting filter. At the core of structure-oriented filtering is
the characterization of the structural trend and the realization of nonstationary
filtering. First, we analyze the relation of the frequency response between two-
dimensional (2D) derivatives and the 2D Hilbert transform (Riesz transform).
Then, we derive the noniterative seismic local dip operator using the 2D Hilbert
transform to obtain the structural trend. Second, we select polynomial fitting
as the nonstationary filtering method and expand the application range of the
nonstationary polynomial fitting. Finally, we apply variableamplitude polynomial
fitting along the direction of the dip to improve the adaptive structureoriented
filtering. Model and field seismic data show that the proposed method suppresses
the seismic noise while protecting structural information.

INTRODUCTION

Random noise, which refers to any unwanted features in data, commonly contami-
nates seismic data. Random noise sources in seismic exploration are roughly divided
into three categories. First, there are external disturbances such as wind and human
activities. Second, there is electronic instrument noise. Third, there is the irregular
interference owing to seismic explosions. Random noise attenuation is a significant
step in seismic data processing. In particular, the extent of noise suppression in
poststack data directly affects the accuracy of subsequent processing and interpreta-
tion. Presently, several different random noise attenuation methods are available. Liu
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et al. (2006) presented a 2D multilevel median filter for random noise attenuation,
whereas Liu et al. (2009b) used a 1D time-varying window median filter. Bekara
and van der Baan (2009) used the empirical mode decomposition (EMD) method
and proposed a filtering technique for random noise attenuation in seismic data. Liu
et al. (2009a) proposed a high-order seislet transform for random noise attenuation.
Li et al. (2012) applied morphological component analysis to suppress random noise
and Liu et al. (2012) proposed a novel method of random noise attenuation based on
local frequency-domain singular value decomposition (SVD). Maraschini and Turton
(2013) assessed the effect of nonlocal means random noise attenuator on coherency.
Li et al. (2013) used time-frequency peak filtering to suppress strong noise in seis-
mic data. Liu and Chen (2013) used f-x regularized nonstationary autoregression to
suppress random noise in 3D seismic data. The abovementioned random noise at-
tenuation methods are limited by their lack of protection of structural information.
For example, improper filtering may blur small faults, which may also make the dis-
placement of larger fault continuous and consequently make layers appear continuous
instead of faulted. Obviously, this hinders fault interpretation, and makes denoising
and protecting structural information important. Fehmers and Hocker (2003) applied
structureoriented filtering to fast structural interpretation. Hoeber et al. (2006) ap-
plied nonlinear filters, such as median, trimmed mean, and adaptive Gaussian, over
planar surfaces parallel to the structural dip. Fomel and Guitton (2006) suggested
the method of plane-wave construction by using model reparameterization. Liu et al.
(2010) applied nonlinear structure-enhancing filtering by using plane-wave prediction
to preserve structural information. Liu et al. (2011b) proposed a poststack random
noise attenuation method by using weighted median filter based on local correlation
and tried to balance the protection of fault information and noise attenuation.

Structure-oriented filtering includes structure prediction and filtering. Seismic
dip is at the core of structure prediction; for, we can use seismic dip to determine
structural trends and achieve structure protection. Ottolini (1983) used local slant
stack to formulate a local seismic dip estimation method. Fomel (2002) proposed
a seismic dip estimation method based on the plane-wave destruction (PWD) filter.
Schleicher et al. (2009) compared different methods of local dip computations. The
selection of filtering methods in structure-oriented filters is critical and polynomial
fitting has been successfully applied to seismic data denoising. Lu and Lu (2009) used
edge-preserving polynomial fitting to suppress random seismic noise. This method
achieves better results when the trajectories of seismic events are linear or the am-
plitudes along the trajectories are not constant. Liu et al. (2011a) proposed a novel
seismic noise attenuation method by using nonstationary polynomial fitting (Fomel,
2009) and shaping regularization (Fomel, 2007) for constraining the smoothness of
the polynomial coefficients.

In this paper, we discuss the two-dimensional (2D) Hilbert transform and use it
to derive the formula for the dip in the plane wave, construct a stable algorithm
for estimating the dip, and improve the computational efficiency of Fomel’s method
(Fomel, 2002) without minimizing the precision of the dip estimation. Finally, we
use synthetic model and field seismic data to demonstrate the applicability of the
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proposed method.

THEORY

The extraction of structural information and the selection of effective filtering meth-
ods are critical to structure-oriented filters. Because of the time-space relation in
seismic data, structural information must satisfy kinematics and kinetics equations.
The dip of seismic events reveals structural features. This study is the first to discuss
a calculation method for the local seismic dip.

Noniterative local dip calculation

Following the local plane-wave equation (Fomel, 2002)

∂P (x, t)

∂x
+ σ(x, t)

∂P (x, t)

∂t
= 0, (1)

we define the local dip of seismic data

σ(x, t) = −∂P (x, t)

∂x
/
∂P (x, t)

∂t
, (2)

where P (x, t) is the seismic wave field and σ(x, t) is the local seismic dip as a function
of time t and distance x. However, in actual computations, because the local dip is
used to determine the direction of a seismic event, we ignore the dimensions and sam-
pling interval; thus, σ only depends on the sampling data and the local dimensionless
dip is defined as

σ = −(
∂P (x, t)

∂x
/
∂P (x, t)

∂t
) · ∆x

∆t
= −∂P

∂x
/
∂P

∂y
, (3)

where ∂P/∂x and ∂P/∂y are the partial derivatives of the seismic wave field in the x−
and y−direction, respectively, and ∆x and ∆t are the respective sampling intervals
in the x− and y−direction.

Using equation 3, we compute the local dip by using the specific values of the
space- and time-directional derivatives. Hence, we first discuss the derivative opera-
tor.

The ideal differentiator frequency response is

FIDD(ω) = iω,−π ≤ ω ≤ π. (4)

The ideal differentiator frequency response is multiplied by a frequency-dependent
linear function in the frequency domain. The direct calculation of the derivative
of the signal in the time domain enhances the high-frequency random noise and
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reduces the dip accuracy. Thus, we analyze the frequency response of the derivative
operator and the frequency response of the Hilbert transform. We derive the Hilbert
transform (Appendix A) and the approximate partial derivative by using the finite
impulse response (FIR) filter (Pei and Wang, 2001). We use a 2D Hilbert transform
to approximate the partial derivatives of the wave field, which reduces the side effect
of strong high-frequency random noise owing to the derivative algorithm.

The redefined noniterative local dip of the seismic data is

σ = −(
∂P

∂x
/
∂P

∂y
) = −FFT

−1[P̃ (x)]

FFT−1[P̃ (y)]
= −

FFT−1[ 1√
cx
P̃ (x)]

FFT−1[ 1√
cy
P̃ (y)]

≈−FFT
−1[HHT (x)]

FFT−1[HHT (y)]
≈−HHTx

HHTy

,

(5)
where P̃ (x) is the frequency response function of the partial derivative in the x−direction
and P̃ (y) is the frequency response function of the partial derivative in the y−direction.
The dimensions are ignored in the derivation and c does not depend on the time and
space sampling intervals; thus, we take cx = cy. HHT (x) is the frequency response
function of the Hilbert transform in the x−direction and HHT (y) is the frequency
response function of the Hilbert transform in the y−direction. HHTx and HHTy are
the components of the 2D Hilbert transform in the x− and y−direction, respectively.
Using equation 5, we calculate the local seismic dip attribute by using the 2D Hilbert
transform instead of the derivative operation. Because division is required in equa-
tion 5 and the denominator might become zero, we add the nonzero constant ε in the
denominator

σ≈− HHTx

HHTy + ε
. (6)

Fomel (2007) proposed the shaping regularization for imposing regularization con-
straints in estimation problems and defined the local seismic attributes. In this paper,
we use the same method to constrain the division and smooth the local dip by using
the Gaussian smooth operator as the regularization operator.

To show the validity of the proposed dip calculation method, we construct a
synthetic seismic model and add white Gaussian random noise, as shown in Figure 1a.
The components of the 2D Hilbert transform in the x− and y−direction are shown
in Figures 1b and 1c, respectively. We obtain the dip of the seismic data by using
the ratio of the two components and calculate the smoothing constraints, as shown
in Figure 1d. We see that the calculation results can accurately reflect the dip value
of the original data at different locations, such as the tilted layers at the top the
underlying strata with the sinusoidal fluctuations, and the fault location. Using the
2D Hilbert transform and shaping regularization, we obtain the smooth local dip
attribute.

Another effective calculation method of the time-varying and space-variant seis-
mic local dip is based on the plan-wave destruction (PWD) filter proposed by Fomel
(2002). The PWD filter realizes the plane-wave propagation across different traces,
while the total energy of the propagating wave stays invariant, by using an all-pass
digital filter in the time domain and a Taylor expansion of the all-pass filter frequency.
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a b

c d

Figure 1: Local seismic dip based on the 2D Hilbert transform. Synthetic seismic
data (a), time component of the 2D Hilbert transform (b), space component of the
2D Hilbert transform (c), and local seismic dip (d).
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We obtain the relation of the PWD and space-time-varying local seismic dip by using
the Gauss-Newton algorithm to solve the nonlinear problem of local seismic dip. This
method can be essentially understood as solving an implicit finite-difference scheme
for the local planewave equation. The disadvantage of the PWD-based calculation
method is its slow computation speed, which is especially worse at higher order con-
ditions. The computational cost of the proposed method is proportional to 2Nx×Nt,
where Nx × Nt is the data size, whereas the computational efficiency of the PWD-
based dip estimation method is proportional to Niter × Nx × Nt, where Niter is the
number of iterations. Hence, to achieve similar accuracy, the dip estimation method
based on the 2D Hilbert transform requires a smaller number of iterations than the
PWD-based method.

The dip of seismic events controls the trend of the constructed seismic model;
thus, next, we need to apply filtering along the trend. The selected filtering method
must simultaneously suppress the seismic noise and protect structural information.

Nonstationary polynomial fitting

Traditional stationary regression is used to estimate the coefficients ai, i = 1, 2, . . . , N
by minimizing the prediction error between a “master” signal s(x) (where x represents
the coordinates of a multidimensional space) and a collection of slave signals Li(x), i =
1, 2, . . . , N (Fomel, 2009)

E(x) = s(x)−
N∑

i=1

aiLi(x). (7)

When x is 1D and N = 2, L1(x) = 1 and L2(x) = x , the problem of minimizing
E(x) amounts to fitting a straight line a1 + a1x to the master signal. Nonstationary
regression is similar to equation 7 but allows the coefficients ai(x) to vary with x,
and the error (Fomel, 2009)

E(x) = s(x)−
N∑

i=1

ai(x)Li(x) (8)

is minimized to solve for the multinomial coefficients ai(x). The minimization be-
comes an ill-posed problem because ai(x) rely on the independent variables x. To
solve the ill-posed problem, we constrain the coefficients ai(x). Tikhonov’s regular-
ization (Tikhonov, 1963) is a classical regularization method that amounts to the
minimization of the following functional (Fomel, 2009)

F (a) = ‖E(x)‖2 + ε2

N∑
i=1

‖D[ai(x)]‖2, (9)

where D is the regularization operator and ε is a scalar regularization parameter.
When D is a linear operator, the least-squares estimation reduces to linear inversion
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(Fomel, 2009)
a = A−1d, (10)

where

a = [a1(x)a2(x) · · · aN(x)]T ,

d = [L1(x)s(x)L2(x)s(x) · · ·LN(x)s(x)]T ,

and the elements of matrix A are

Aij(x) = Li(x)Lj(x) + ε2δijD
T D .

Figure 2: Least-squares linear fitting compared with nonstationary polynomial fitting.

Next, we use a simple signal to simulate the variation of the amplitude of a
nonstationary event with random noise (dashed line in Figure 2). In Figure 2, the
dot dashed line denotes the results of the least-squares linear fitting and the solid line
denotes the results of the nonstationary polynomial fitting. We compare the least-
squares linear fitting and nonstationary polynomial fitting results, and we find that
the nonstationary polynomial fitting models the curve variations more accurately for
events with variable amplitude, particularly for 40 < x < 60.

SYNTHETIC DATA TESTS

We construct a new structure-oriented filtering method based on the 2D Hilbert
transform with nonstationary polynomial fitting and apply it to synthetic data (Fig-
ure 1a). The local seismic dip (Figure 1d) controls the trend of the event, and we
apply nonstationary polynomial fitting along the direction of the dip for fast struc-
tural interpretation using structure-oriented filtering. We achieve continuous model
protection in the direction of dip, and noise attenuation and fault protection because
of the use of nonstationary polynomial fitting. Nine sampling points are used in the
structure-oriented filtering and five sampling points in the nonstationary polynomial
fitting. The filtering results are shown in Figure 3a and the difference profile is shown
in Figure 3b. Figure 3a shows that the upper tilted layer, the lower sinusoidal layer,
and the fault information are preserved, while the noise is clearly suppressed. Ran-
dom noise constitutes most of the difference profile without any tilted layer and fault
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a b

c d

e

Figure 3: Analysis of results using different structure-oriented filtering. Nonstationary
polynomial fitting (a), difference profile of nonstationary polynomial fitting (b), local
PWD-based dip (c), median filter (d), and difference profile of median filter (e).
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information left because the local seismic dip cannot reflect the trend of the layers
and owing to the attenuation of the limited effective information. To compare the
proposed method with the PWD-based local dip estimation method (Figure 3c) with
similar dip accuracy (Figure 1d), we choose the median filter and show the results in
Figure 3d and the difference profile in Figure 3e. We compare the two profiles after
the application of the median filter. We find more useful structural information than
the method we proposed. That means the method we proposed has better effect.

FIELD DATA TESTS

a b

c d

Figure 4: Comparison of processing results. Field data (a), Local dip (b), After
filtering (c), Difference profile (d).

For field data processing, we chose the 2D profile of 3D poststack data (Liu and
Chen, 2013). The shallow structures are simple planar layers and the deep structures
are complex curved layers. First, we use the proposed method, which is based on
the 2D Hilbert transform, to compute the corresponding local seismic dip attribute
(Figure 4b). From Figure 4b, we see that the dip changes smoothly and steadily in
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the midshallow layer corresponding to the continuous event in the profile, whereas
the variation of the dip in the deep layer is relatively larger, which characterizes the
bending event in the mid-deep layer.

The trend of the local seismic events can be determined by using the dip at-
tribute; thus, we select the filtering window, which is determined by the dip, and
use nonstationary polynomial fitting for filter processing. The window size of the
structure-oriented data consists of 11 sampling points and the window size of the
nonstationary polynomial fitting comprises seven sampling points.

Figure 4c shows the denoising results. We see that the random noise in the raw
profile is suppressed, the whole section is clearer, and the continuity of the plane
event (0.1s-0.3s) in the shallow layer and the curved event (below 0.3s) in the deep
layer has improved. The difference profile (Figure 4d) shows that the removed noise
is mainly irrelevant random noise and the information is well preserved.

CONCLUSIONS

We propose a seismic dip estimate method based on the 2D Hilbert transform. We
compute the stable dip by using the noniterative approximation relation within the
middle frequency band, and improve the computational efficiency relative to the it-
erative dip algorithm based on the PWD filter. We combine the proposed method
with nonstationary polynomial fitting to suppress the seismic random noise using
the computed local seismic dip. We predict the seismic structure trend using the
structure-oriented window based on the seismic dip, while balancing the random
noise attenuation and signal preservation via filtering with the nonstationary polyno-
mial fitting. The proposed method suppresses the seismic noise and strongly depend
on the of dip trend prediction. The accuracy of computed dip is directly affected by
filtering. The method is not applicable at strong noise conditions. We use synthetic
model and field data processing, to demonstrate the applicability of the proposed
method.

APPENDIX A: HILBERT TRANSFORM DERIVATION
FOR APPROXIMATING THE PARTIAL DERIVATIVE

Derivation of the FIR transfer function for the frequency re-
sponse of digital differentiators

First, to characterize the FIR for signal differentiators, we transform the Leibniz series
2arcsinx√

1− x2
to power series (Lehmer, 1985)

2arcsinx√
1− x2

= 2x

[
1 +

∞∑
m=1

(2m)!!

(2m + 1)!!
x2m

]
. (A-1)
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We substitute sin(
ω

2
) for x, and after rearrangement and truncation of the first M

terms, we obtain

ω√
1− sin2ω

2

= 2sin
ω

2

[
1 +

M∑
m=1

(2m)!!

(2m + 1)!!

(
1− cosω

2

)m

+ o((
1− cosω

2
)M+1)

] (A-2)

and after manipulation

ω = 2sin
ω

2
cos

ω

2

[
1 +

M∑
m=1

(2m)!!

(2m + 1)!!

(
1− cosω

2

)m

+ o((
1− cosω

2
)M+1)

]

= sinω

[
1 +

M∑
m=1

(2m)!!

(2m + 1)!!

(
1− cosω

2

)m

+ o((
1− cosω

2
)M+1)

]
.

(A-3)

We ignore the higher order terms and we obtain the (2M + 2)th-order causal transfer
function of the derivative operator as

F̂DD(z) ≈ −1− z−2

2

{
z−M +

M∑
m=1

(2m)!!

(2m + 1)!!
·z−(M−m)

[
−(1− z−1)2

4

]m
}
. (A-4)

Derivation of the FIR transfer function for the frequency re-
sponse of the Hilbert transform

The ideal frequency response of the Hilbert transform is expressed as

HIHT (ω) = −i sgnω = −i ω
|ω|

=

{
i, −π < ω < 0
−i, 0 < ω < π

. (A-5)

From equations 4 and A-5, we obtain the difference as 1/ |ω|. For

sgnx =
x√
x2

= xf(x2), x 6= 0 (A-6)

and f(u) =
1√
u
, u > 0, the Taylor series of f(u) at center c is expressed

f(u) =
1√
c

[
1 +

∞∑
m=1

(2m− 1)!!

(2m)!!

(
1− u

c

)m
]
, (A-7)

where (2m− 1)!! = 1 · 3 · 5 . . . (2m− 1), (2m)!! = 1 · 3 · 5 . . . (2m). Consequently, the
signum function sgnx is expressed

sgnx =
x√
c

[
1 +

∞∑
m=1

(2m− 1)!!

(2m)!!

(
1− x2

c

)m
]
. (A-8)
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We substitute sinω for x, based on sgnω=sgn(sinω) for π < ω < π, truncate the series
at the first M terms, and obtain the sinusoidal power series of the signum function as

sgnω =
sinω√

c

[
1 +

M∑
m=1

(2m− 1)!!

(2m)!!

(
1− sin2ω

c

)m

+ ◦((1− sin2ω

c
)M+1)

]
(A-9)

The series in A-9 converges for −1 < 1− sinω

c
< 1; that is, c has to be larger than

1/2. On the other hand, the expansion center c in the x-domain is associated to the
frequency center in the ω-domain via the relation c = sin2ωc. Therefore, c = sin2ωc

must be less than or equal to 1. Accordingly, c is constrained by 1/2 < c ≤ 1 and the
corresponding ωc is within the range [π/4, π/2]. Clearly, the ideal frequency response
is well approximated within the middle frequency band. Multiplying A-9 by −i and

substituting
z − z−1

2i
for sinω, the transfer function for the zero phase FIR of the

Hilbert transform is expressed as

HHT (z, c) ≈ −z− z−1

2
√

c

{
1 +

M∑
m=1

(2m− 1)!!

(2m)!!

[
1 +

1

c

(
z− z−1

2

)2
]m}

(A-10)

To obtain the causal transfer function, HHT (z, c) is multiplied by z−2M−1 and the
resultant transfer function of the FIR Hilbert transform of the (2M+2)th-order is

ĤHT (z, c) ≈ −1− z−2

2
√

c

{
z−2M +

M∑
m=1

(2m− 1)!!

(2m)!!
z−2(M−m)

[
z−2 +

1

c

(
1− z−2

2

)2
]m}
(A-11)

For M=0, the transfer functions of equations A-4 and A-11 are approximated as

ĤHT (z, c) ≈ −1− z−2

2
√

c
(A-12)

F̂DD(z) ≈ −1− z−2

2
(A-13)

We compare equations A-12 and A-13, and we conclude that these two transfer func-
tions in middle frequency band of the frequency domain differ by the constant coef-

ficient
1√
c
.
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