Nonstationary pattern-based signal-noise separation using adaptive prediction-error filter |
To estimate the nonstationary pattern of a 2D seismic section , prediction coefficients An of the APEF can be obtained as:
To obtain the whitening output, one needs to design APEF of data with the causal filter structure. For example, a five-sample (time) three-sample (space) template is shown as:
(i) Random noise: it supposes that the energy of random noise is spatially uncorrelated, and its statistical property may slightly change with time. To characterize the model of random noise, noise pattern N can be set as the shape of a column. The following is an example of the noise pattern structure with 4 (time) 1 (space) coefficients:
We can generate a noise model containing the characteristics of noise , and calculate APEF from the noise model. Also, one can directly estimate APEF of random noise from dataset , especially when there exists strong random noise in the dataset. with one-column shape can only capture the temporal spectrum of random noise, but ignores the signal predictability along the space direction in the dataset.
(ii) Ground-roll noise: due to the difference of the dominant frequency, ground-roll noise and the effective signal can usually be separated in the frequency domain. Using a low-pass filter to the data can produce a noise model. Similarly, according to the difference of slowness, the primaries can be muted in the radon domain, and a ground-roll noise model can be obtained through the inverse radon transform. Here, we first use a reliable low-pass filter to generate the ground-roll noise model, then APEF of the ground-roll noise is calculated according to the structure similar to that of data as equation 11. Due to the slower speed of the ground-roll noise, it has steep events with larger local slope, and the filter size needs to be adjusted to a larger length in the time direction.
Therefore, the proposed signal-noise separation method exploits a two-step strategy: (i) estimating data pattern and noise pattern by using the APEF, and (ii) separating signal and noise with the pattern-based method (equation 7). The further examination of the proposed method will be shown in the data examples section.
Nonstationary pattern-based signal-noise separation using adaptive prediction-error filter |