next up previous [pdf]

Next: FILTERING ON A HELIX Up: Reproducible Documents

The helical coordinate

Jon Claerbout


For many years, it has been true that our most powerful signal-analysis techniques are in one-dimensional space, while our most important applications are in multidimensional space. The helical coordinate system makes a giant step toward overcoming this difficulty.

Many geophysical map estimation applications appear to be multidimensional, but in reality they are one-dimensional. To see the tip of the iceberg, consider this example: On a 2-dimensional Cartesian mesh, the function \begin{displaymath}
\begin{array}{\vert r\vert r\vert r\vert r\vert}
\hline
0 ...
... 0 & 1 & 1 &0 \\
\hline
0 & 0 & 0 &0 \\
\hline
\end{array}\end{displaymath}

has the autocorrelation \begin{displaymath}
\begin{array}{\vert r\vert r\vert r\vert} \hline
1 & 2 & 1\\
\hline
2 & 4 & 2\\
\hline
1 & 2 & 1
\\ \hline
\end{array}\end{displaymath} .

Likewise, on a 1-dimensional cartesian mesh,

the function \begin{displaymath}
\begin{array}{\vert r\vert r\vert r\vert r\vert r\vert r\ver...
... r\vert} \hline
1&1&0&0& \cdots& 0& 1&1
\\ \hline
\end{array}\end{displaymath}

has the autocorrelation \begin{displaymath}%\mathcal{R} =
\begin{array}{\vert r\vert r\vert r\vert r\ver...
...e
1&2&1&0&\cdots&0&2&4&2&0&\cdots&1&2&1
\\ \hline
\end{array}\end{displaymath} .

Observe the numbers in the 1-dimensional world are identical with the numbers in the 2-dimensional world. This correspondence is no accident.






2015-03-25