next up previous [pdf]

Next: Mixed domain Up: Sava and Fomel: Riemannian Previous: Appendix A

Space-domain finite-differences

Starting from equation 13, based on the Muir expansion for the square-root (Claerbout, 1985), we can write successively: k_&=& a 1- ( b k_a )^2
&& a [1- c_1( b k_a )^2 1-c_2( b k_a )^2 ]
&& a - c_1a (b a )^2( k_ )^2 1-c_2(b a )^2( k_ )^2 . If we make the notations &=& - c_1a (b a )^2,
&=& 1 ,
&=& c_2(b a )^2. we obtain the finite-differences solution to the one-way wave equation in Riemannian coordinates:
\begin{displaymath}
k_\tau \approx \omega a + \omega \frac{ \nu \left ( \frac{ k...
...{\mu-\rho \left ( \frac{ k_\gamma }{ \omega } \right )^2} \;.
\end{displaymath} (16)




2008-12-02