Starting from equation 13,
based on the Muir expansion for the square-root
(Claerbout, 1985),
we can write successively:
k_&=& a 1- ( b k_a )^2
&& a [1- c_1( b k_a )^2
1-c_2( b k_a )^2 ]
&& a - c_1a (b a )^2( k_ )^2
1-c_2(b a )^2( k_ )^2 .
If we make the notations
&=& - c_1a (b a )^2,
&=& 1 ,
&=& c_2(b a )^2.
we obtain the finite-differences solution to the
one-way wave equation in Riemannian coordinates: