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ABSTRACT

We propose a novel method for random noise attenuation in seismic data by
applying regularized nonstationary autoregression (RNA) in frequency-space (f -
x) domain. The method adaptively predicts the signal with spatial changes in
dip or amplitude using f -x RNA. The key idea is to overcome the assumption
of linearity and stationarity of the signal in conventional f -x domain prediction
technique. The conventional f -x domain prediction technique uses short temporal
and spatial analysis windows to cope with the nonstationary of the seismic data.
The proposed method does not require windowing strategies in spatial direction.
We implement the algorithm by iterated scheme using conjugate gradient method.
We constrain the coefficients of nonstationary autoregression (NA) to be smooth
along space and frequency in f -x domain. The shaping regularization in least
square inversion controls the smoothness of the coefficients of f -x RNA. There are
two key parameters in the proposed method: filter length and radius of shaping
operator. Synthetic and field data examples demonstrate that, compared with
f -x domain and time-space (t-x) domain prediction methods, f -x RNA can be
more effective in suppressing random noise and preserving the signals, especially
for complex geological structure.

INTRODUCTION

Random noise attenuation in seismic data can be implemented in the frequency-space
(f -x) and time-space (t-x) domain using prediction filters (Abma and Claerbout,
1995). Linear prediction filtering assumes that the signal can be described by an
autoregressive (AR) model. When the data are contaminated by random noise, the
signal is considered to be predicted by the AR filter and the noise is the residual
(Bekara and van der Baan, 2009). A number of approaches in f -x domain have been
proposed and been used for attenuating random noise. The f -x prediction technique
was introduced by Canales (1984) and further developed by Gulunay (1986). The f -x
domain prediction technique is also referred as f -x deconvolution by Gulunay (1986).
Sacchi and Kuehl (2001) utilized the autoregressive-moving average (ARMA) struc-
ture of the signal to estimate a prediction error filter (PEF) and the noise sequence is
estimated by self-deconvolving the PEF from the filtered data. Hodgson et al. (2002)
presented a novel method of noise attenuation for 3D seismic data, which applies a
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smoothing filter (e.g. 2D median filter) to each targeted frequency slice and allows
targeted filtering of selected parts of the frequency spectrum. The conventional f -
x domain prediction uses windowing strategies to avoid that the seismic events are
not linear. The data are assumed to be piecewise linear and stationary in an anal-
ysis temporal and spatial window. To overcome the potentially low performance of
f -x deconvolution that arises with processing structural complex data, Bekara and
van der Baan (2009) proposed a new filtering technique for random and coherent
noise attenuation in seismic data by applying empirical mode decomposition (EMD)
(Huang et al., 1998) on constant-frequency slices in the f -x domain and removing the
first intrinsic mode function. In addition, in the research field of seismic data inter-
polation, Naghizadeh and Sacchi (2009) proposed an adaptive f -x prediction filter,
which was used to interpolate waveforms that have spatially variant dips. The f -x
domain prediction technique can be implemented in the frequency slice and also in
pyramid domain (Sun and Ronen, 1996). The implemented in pyramid domain makes
the operators more efficient because one only needs to estimate one prediction filter
from many different frequencies (Sun and Ronen, 1996; Hung et al., 2004; Guitton
and Claerbout, 2010).

The prediction process can be also achieved in t-x domain (Claerbout, 1992).
Abma and Claerbout (1995) discussed f -x and t-x approaches to predict linear events
and concluded that f -x prediction is equivalent to t-x prediction with a long time
length. Crawley et al. (1999) proposed smooth nonstationary PEFs with micropatches
and radial smoothing in the application of seismic interpolation, which typically pro-
duces better results than the rectangular patching approach. Izquierdo et al. (2006)
proposed a technique for structural noise reduction in ultrasonic nondestructive exam-
ination using time-varying prediction filter. Sacchi and Naghizadeh (2009) proposed
an algorithm to compute time and space variant prediction filters for noise attenu-
ation, which is implemented by a recursive scheme where the filter is continuously
adapted to predict the signal.

Fomel (2009) developed a general method of nonstationary regression with shap-
ing regularization (Fomel, 2007). Shaping regularization has an advantage of a fast
iterative convergence. Regularized nonstationary regression (RNA) has been used in
multiple subtraction Fomel (2009), time-frequency analysis (Liu et al., 2011b), and
nonstationary polynomial fitting (Liu et al., 2011a). Liu and Fomel (2010) intro-
duced an adaptive PEFs using RNA in t-x domain which has been used for trace
interpolation.

In this paper, we investigate the f -x domain prediction technique and propose
f -x domain RNA to attenuate random noise in seismic data. Firstly, we review
the theory of f -x stationary autoregression. Then, we describe the f -x RNA and
extend to complex number domain. Next we provide the methodology of random
noise attenuation using f -x RNA. Finally, we use synthetic and real data examples to
evaluate and compare the proposed method with other noise attenuation techniques,
such as f -x domain and t-x domain prediction techniques.
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REVIEW OF F -X DOMAIN STATIONARY
AUTOREGRESSION

We first consider a seismic section S(t, x) that consists of a single linear event with
the slope p and constant amplitude. The frequency domain representation of S(t, x)
is given by

S(f, x) = A(f)ej2πfxp, (1)

where A(f)is the wavelet spectrum, f is the temporal frequency, and xis the spatial
variable. We assume x = n∆x, where n = 1, 2, ..., N , N is the number of traces in
the whole section. The relationship between the n-th trace and (n-1)-th trace can be
easily shown as

Sn(f) = a1(f)Sn−1(f), (2)

where a1 = exp(j2πfp∆x). This recursion is a first-order differential equation also
known as an AR model of order 1 and represents a single complex-valued harmonic
(Bekara and van der Baan, 2009). If there are M linear events in x-t domain, we can
have a difference equation of order M (Sacchi and Kuehl, 2001)

Sn(f) =
M∑
i=1

ai(f)Sn−i(f). (3)

The recursive filter {ai(f)}can be found for predicting a noise-free superposition of
complex harmonics. Considering seismic data with additive random noise and non-
causal prediction with order 2Mwhich includes both forward and backward prediction
equations (Spitz, 1991; Naghizadeh and Sacchi, 2009), we can obtain

εn(f) = Sn(f)−
M∑
i=1

aiSn−i(f)−
−M∑
i=−1

aiSn−i(f), (4)

where εn(f)is a complex noise sequence. Canales (1984) argues a causal estimate

of signal
M∑
i=1

ai(f)Sn−i(f) is the predictable part of data obtained by an AR model.

This operation is usually called f -x deconvolution (Gulunay, 1986). Noise-free events
that are linear in the t-x domain manifest as a superposition of harmonics in the f -x
domain and these harmonics can be perfectly predicted using AR filter. If seismic
events are not linear, or the amplitudes of wavelet are varying from trace to trace,
they no longer follow Canaless assumptions (Canales, 1984). One needs to perform
f -x deconvolution over a short sliding window in time and space. This leaves the
choice of window parameters (window size and length of overlapping between adjacent
windows). Bekara and van der Baan (2009) discuss some limitations of conventional
f -x deconvolution in detail.
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F -X DOMAIN REGULARIZED NONSTATIONARY
AUTOREGRESSION

Nonstationary autoregression has been developed and used in signal processing (Bakrim
et al., 1994; AllenAboutajdine et al., 1996; Izquierdo et al., 2006) and seismic data
processing (Sacchi and Naghizadeh, 2009). Fomel (2009) developed a general method
of nonstationary autoregression using shaping regularization technology and applied
it to multiples subtraction. In this paper, we extend the RNA method to f -x domain
for complex numbers and apply it to seismic random noise attenuation.

Consider two adjacent seismic traces Sn(f) and Sn−1(f) in f -x domain of a seis-
mic section that consists of a single nonlinear event with the slope pn and varying
amplitude Bn(f). Similar to equation 1, we can write

[Sn(f) =
Bn(f)

Bn−1(f)
ej2πf∆xpnSn−1(f) = a1(f)Sn−1(f). (5)

From equation 5 we can find that the coefficients of AR is the function of space
index n and frequency index f . Therefore, we can use nonstationary autoregression
to describe this problem. Equation 5 describes the relation between two traces. If we
consider multiple traces, the nonstationary autoregression can be defined as (Fomel,
2009)

εn(f) = Sn(f)−
M∑
i=1

an,i(f)Sn−i(f), (6)

where n and fare the coordinate of space and frequency, respectively. If considering
the situation of non-causal nonstationary autoregression, we can rewrite the Nonsta-
tionary autoregression models (equation 6) as

εn(f) = Sn(f)−
M∑
i=1

an,i(f)Sn−i(f)−
−M∑
i=−1

an,i(f)Sn−i(f). (7)

Equation 7 indicates that one trace noise-free in f -x domain can be estimated by
weighted stacking adjacent traces with the weights an,i(f), which is varying along the
space and frequency. Note that the difference between equations 4 and 6 is that
the coefficients are varying with space coordinate n in equation 7. To obtain the
coefficients an,i(f) from equation 7, we can transform equation 7 to the following
least square problem:

min
an,k(f)

||Sn(f)−
M∑
i=1

an,i(f)Sn−i(f)−
−M∑
i=−1

an,i(f)Sn−i(f)||22, (8)

where ‖‖2
2denotes the squared L-2 norm. Note that both the data Sn(f) and the

coefficients an,i(f) are in complex numbers domain.
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The problem of the minimization in equation 7 is ill-posed because it has more
unknown variables than constraints. To obtain the spatial-varying coefficients in non-
stationary autoregression, several methods can be employed (AllenAboutajdine et al.,
1996). Some of these are related to the expansion of the spatial-varying coefficients in
terms of a given sets of orthogonal basis functions and estimation of the coefficients
of the expansion by the least-square method (Izquierdo et al., 2006). Naghizadeh and
Sacchi (2009) used exponentially weighted recursive least square (EWRLS) to solve
the adaptive problem and applied it to seismic trace interpolation. Fomel (2009)
proposed regularized nonstationary autoregression in which shaping regularization
technology (Fomel, 2007) is used to constrain the smoothness of the coefficients of
nonstationary autoregression. In this paper, we also adopt shaping regularization to
solve the under-constrained problem equation 8.

With the addition of a regularization term, equation 8 can be written as

min
an,if
||Sn(f)−

M∑
i=−M,i6=0

an,i(f)Sn−i(f)||22 +R[an,i(f)], (9)

where R denotes the shaping regularization operator. Fomel (2009) compared clas-
sic Tikhonovs regularization with shaping regularization in RNA problem. Shaping
regularization Fomel (2007) provides a particularly convenient method of enforcing
smoothness in iterative optimization schemes. Shaping regularization has clear advan-
tages of a more intuitive selection of regularization parameters and a faster iterative
convergence (Fomel, 2009). In the shaping regularization, we assume the initial value
for the estimated model an,i(f) is zero. If we choose a more appropriate initial value,
we can have a fast iterative convergence of the conjugate-gradient iteration in shaping
regularization.

Note that the RNA equation in this paper (equation 9) is in complex number
domain while the RNA used in multiples subtraction (Fomel, 2009) is in real number
domain. Analogous to RNA in real number domain, we force the complex coefficients
an,i(f) in equation 9 to have a desired behavior, such as smoothness. In shaping
regularization technology, we need to choose a shaping operator S (Fomel, 2007).
In this paper, we choose shaping operator S as Gaussian smoothing with adjustable
radius r. Fomel (2007) indicated Gaussian smoothing can be implemented by repeated
triangle smoothing operator. Both the data Sn(f) and the coefficients an,i(f) are
complex numbers, but the shaping operator S is real. Therefore, shaping operator S
is operated in real and imaginary parts of the complex coefficients respectively and the
L-2 norm in equation 9 is the norm of complex numbers. When using the algorithm of
conjugate-gradient iterative inversion with shaping regularization proposed by Fomel
(2007) to solve the complex RNA, we only need to replace transpose of real number
by conjugate transpose of complex number.

Once we obtain the complex coefficients of RNA, we can achieve an estimation of
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signal

S̃n(f) =
M∑

i=−M,i6=0

an,i(f)Sn−i(f). (10)

When we use f -x RNA to noise attenuation, we first select a time window in t-x
domain and transform the data to f -x domain. The usage of time window is to
guarantee that the data is approximately stationary in time. The f -x NAR can deal
with spatial nonstationary data in f -x domain. Then we use equation 9 with shaping
regularization to compute the coefficients an,i(f) and use equation 10 to estimate the
signal in f -x domain. Finally, we transform data back to the t-x domain and repeat
for the next time window.

The computational cost of the proposed method is O (NdNfNiter), where Nd is
data size, Nf is filter size, Niteris the number of conjugate-gradient iterations. If
Niterand Nf are small, this is a fast method. In practical implementation, we can
choose the range of computed frequency to reduce the computation cost. In addition,
if we can simplify the coefficients not to be frequency-dependent, we can apply RNA in
frequency slice. In that case the different-frequency slices can be processed in parallel.
And the computation cost and memory requirements can be further reduced.

Consider a simple section (Figure 2(a)), which includes one event, 501 traces. The
event is obtained by convolution with Ricker wavelet. Both the dip and amplitude of
the event are space-varying. The travel time is a sine function and the amplitude of
the Ricker wavelet is multiplied byB(x) = 0.2(x− 2.5)2 +0.5. This event is obviously
nonstationary in space. We add some random noise to it (Figure 1(b)). The event
is greatly contaminated by random noise, especially in the middle part, because the
signal of the middle part is poorer than the sideward and the noise levels are the
same in the whole section. We use three methods, f -x domain prediction, t-x domain
prediction, and f -x domain RNA, to suppress random noise. The f -x domain and
t-x domain prediction methods we used in this paper are discussed by (Abma and
Claerbout, 1995). The f -x domain prediction is implemented over a sliding window
of 20 traces width with 50% overlap and the filter length is 4, M = 2 in equation 4
and the t-x domain prediction is implemented over the same sliding window and the
filter length in space and time are 4 and 5 respectively. The f -x RNA is implemented
with the parameters: the filter length is 4, M = 2 in equation 8; the smoothing
radiuses in space and frequency axes of shaping regularization are respectively 20
and 3, rx = 20, rf = 3. Comparing the results of f -x RNA (Figure 1(f)) with
other prediction methods (Figures 4(c) and 4(d), we find that the f -x RNA is
more effective in random noise attenuation for this simple nonstationary data. From
the difference sections (Figure 2), we find that all the three methods remove some
effective signals. However, the proposed method removes fewest signals than other
two methods. Note that the removed signals by t-x and f -x prediction methods are
bigger in the sideward part than middle part, because the filters are the same in a
sliding time window while the amplitude and slope of the event are different.

In order to quantitatively evaluate the effect of denoising between different meth-
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Figure 1: (a) Synthetic data. (b) Noisy data (SNR=1.53). (c) Result of f -x domain
prediction (SNR=2.53). (d) Result of t-x domain prediction (SNR=3.12). (e) Result
of f -x RNA without constraint of smoothness along the frequency axis (SNR=4.87).
(f) Result of f -x RNA with rf = 3 (SNR=5.06). We decimate the data for display

purpose. rna2d/simple sin,nsin,tpefpatch,fxpatch,npre1,npre2
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Figure 2: The real part of coefficients at a given shift an,i=1(f). rna2d/simple npar2

Figure 3: Difference sections of f -x domain prediction (a), t-x domain prediction (b),

and f -x RNA (c). rna2d/simple fxdiff,mpapatch,ndiff2
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ods, we use signal-to-noise ratio (SNR) to compare these three methods. The SNR is
estimated by

SNR = 10log10(

∑
t,n

[dn(t)]2∑
t,n

[dn(t)− rn(t)]2
), (11)

where rn(t) is the noisy section and dn(t)is the noisy-free section or the section after
noise attenuation. In this simple example, the SNR of the input data without pro-
cessing is 1.53. After noise attenuation, the SNR of f -x RNA is 5.06 dB, and the
SNRs of f -x domain and t-x domain prediction are respectively 2.53 dB and 3.12 dB.
The f -x RNA can improve SNR more greatly.

To test the sensitivity to the constraint of smoothness along the frequency axis, we
give the result of f -x RNA without constraint of smoothness along the frequency axis
in this simple example (Figure 1(e)). The result without constraint along frequency
axis (Figure 1(e)) is a little worse than that with constraint along frequency. But
both of them are better than the results of conventional f -x domain and t-x domain
prediction. Therefore, to reduce the computation cost, we can simplify the coefficients
not to be frequency-dependent when the input seismic data is huge. It is a tradeoff
between computation cost and effect of noise attenuation.

Because the dip and amplitude of the event are varying smoothly, f -x RNA can
predict the signal with smooth coefficients an,i(f). To specify the coefficients, we
display the real parts of the complex coefficients at a given shift an,i=1(f) (Figure 2).
The reason of displaying real parts not imaginary parts is that the signs of real parts
of coefficients are the same for forward and backward prediction. We find that the
real parts of the complex coefficients are smooth. The smoothing radius controls the
smoothness of the coefficients. If we only use one adjacent trace to predict the trace,
the coefficients should have the expression

an,i=1(f) =
Bn(f)

Bn−1(f)
ej2πf∆xpn . (12)

From equation 12 we can note that if the dip and amplitude are smoothly varying,
the coefficients are smooth. Therefore, we use Gaussian shaping regularization to
constrain the coefficients when solving the least squares equation 9.

EXAMPLES

We demonstrate the effectiveness of the proposed f -x RNA on a synthetic shot gather
and a field poststack dataset.

Synthetic shot gather

Figure 4(a) shows a synthetic shot gather with four hyperbolic events, 501 traces.
Some random noise is added to this gather. We do not use windows in time for this
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Figure 4: (a) Synthetic shot gather. (b) Noisy gather. (c) Result of f -x do-
main prediction (SNR=0.98). (d) Result of t-x domain prediction (SNR=1.25).
(e) Result of f -x RNA (SNR=3.12). (f) The real part of coefficients at a
given shift an,i=1(f). We decimate the data in (a)-(e) for display purpose.

rna2d/shot para,npara,tpefpatch,fxpatch,npre,npar

Figure 5: Difference sections of f -x domain prediction (a), t-x domain prediction (b),

and f -x RNA (c). rna2d/shot fxdiff,mpapatch,ndiff
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example. For f -x RNA, the length of filter is M = 4 and the smoothing radiuses in
space and frequency axes are respectively 20 and 3, rx = 20, rf = 3. The f -x domain
prediction is implemented over a sliding window of 20 traces width with 50% overlap
and the filter length is 6, M = 3 and the t-x domain prediction is implemented
over the same sliding window and the filter length in space and time are 6 and 5
respectively. The estimated nonstationary coefficients by the proposed f -x RNA are
shown in Figure 4(f). Note that the middle coefficient is bigger than the sideward,
which is because the dip of the middle is smaller than the sideward. The results of
three methods are shown in Figures 4(d)- 6(d), respectively. The f -x RNA achieves
a similar result to f -x domain and t-x domain prediction methods. However, we use
equation 11 to compute the SNRs of the results of three methods. The SNRs of three
methods are 0.98 dB, 1.25 dB, 1.67 dB, respectively. The f -x RNA can improve SNR
more greatly. The f -x RNA solves the nonstationary case by allowing the coefficients
smoothly varying, while f -x domain or t-x domain prediction method uses windowing
strategies. From the difference sections (Figure 7(a)- 5(c)), we find that f -x domain
and t-x domain prediction methods damage more signals than f -x RNA. If we use
windows in time for this example, we can obtain better results. This example shows
that f -x RNA can be used for random noise attenuation in shot gather.

Field poststack dataset

Figure 6 is a seismic image from marine data after time migration. The preprocessing,
such as bandpass filtering and migration, has removed some noise. However, some
noise still exists in this image (indicated by arrows). This dataset is not structurally
too complex and the noise seems random. Therefore, we can use t-x domain or f -x
domain prediction methods to attenuate the random noise. Figures 6(b)- 6(d) show
the results of random noise attenuation using f -x domain prediction, t-x domain
prediction and f -x RNA, respectively. The length of time window is 512 ms in all
the three methods. For f -x RNA, the filter length is M = 4, and the smoothing
radiuses in space and frequency axes are respectively 20 and 3, rx = 20, rf = 3.
The f -x domain prediction is implemented over a sliding window of 20 traces width
with 50% overlap and the filter length is M = 4 and the t-x domain prediction is
implemented over the same sliding window and the filter length in space and time are
6 and 5 respectively. The f -x domain and t-x domain prediction methods removes
random noise well in the case that the events are approximately linear. In the area
of complex structure, however, both of the f -x domain and t-x domain prediction
methods can not obtain a good result. Compared to f -x domain and t-x domain
prediction methods, f -x RNA removes more noise and preserves signals (Figure 7(a)-
7(c)). Note that f -x domain and t-x domain prediction methods remove some signals,
especially for complex structure (indicated by arrows in Figures 7(a) and 7(b)). We
display the zoomed section in Figure 8(a)- 8(d). The zoomed sections show the
proposed method is more effective than other methods, especially in the area of
complex structure indicated by arrow. The f -x RNA gives a good result not only for
linear events but also for curving events (indicated by arrows in Figure 8(a)- 8(d)).
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Figure 6: (a) A field marine data set. (b) The result of f -x domain predic-
tion. (c) The result of t-x domain prediction. (d) The result of f -x RNA.

rna2d/real data,fxm,tx,npre
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Figure 7: Difference sections of f -x domain prediction (a), t-x domain prediction (b),

and f -x RNA (c). rna2d/real fxdiff,txdiff,nprediff
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Figure 8: Zoomed sections. (a) Original data. (b) The result of f -x domain pre-
diction. (c) The result of t-x domain prediction. (d) The result of f -x RNA.

rna2d/real zdata,zfxm,ztx,znpre
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Figure 9: Comparison on spectra of one trace at 6000 m in field marine data (Figure
6- 6(d)). (a)-(d) are the amplitude spectra of one trace at 6000 m in Figures 6- 6(d),

respectively. rna2d/real dataf,fxf,txf,npref
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From the comparison on the spectra of a trace randomly chosen as shown in Figure
9(a)- 9(d), we can see that f -x domain and t-x domain prediction methods greatly
attenuate frequency components in [10,30] Hz, which includes effective signals. Thus,
the difference sections of f -x domain and t-x domain prediction methods (Figures
7(a) and 7(b)) include more signals than f -x RNA (Figure 7(c)). For high frequency
random noise, all the three methods can achieve a similar result (Figure 9(a)- 9(d)).

CONCLUSIONS

We have proposed a novel method for random noise attenuation using f -x domain
regularized nonstationary autoregression. f -x RNA uses shaping regularization to
constrain the complex nonstationary coefficients to be smooth along space and fre-
quency axes. Contrary to conventional noise-reduction technology, f -x domain and
t-x domain prediction, f -x RNA invokes no piecewise-stationary assumption. The
parameters used in f -x RNA are intuitive because the parameters directly control
the smoothness of complex coefficients. The proposed method has two key parame-
ters: filter length and smoothing radius of shaping operator. Filter length is related
to the number of events and smoothing radius is related to the smoothness of desired
RNA complex coefficients. As the smoothing radius increases, the result of RNA
approaches the result of stationary autoregression. This approach does not require
breaking the input data into local windows along space axis, although it is concep-
tually analogous to sliding spatial windows with maximum overlap. Both synthetic
and field data examples confirm that the proposed approach can be significantly more
effective than other noise-reduction methods in improving signal-to-noise ratio and
preserving the signals. A comparison with the recently published t-x RNA method
has not been attempted, but remains of interest for further investigation. The pro-
posed method is easy to extend to the 3D case (f -x-y domain). One only needs to
add a space dimension in the equation 9 when applied in 3D case. Besides random
noise attenuation, f -x RNA may have other applications in seismic data processing,
such as seismic trace interpolation.

ACKNOWLEDGMENTS

We would like to thank Sergey Fomel, Jingye Li and Yang Liu for inspiring discus-
sions and help with the code in the Madagascar software package. We also thank the
associate editor, the reviewer Clement Kostov and one anonymous reviewer for their
constructive comments, which improved the quality of the paper. This work is finan-
cially supported by Important National Science and Technology Specific Projects of
China (grant 2011ZX05023-005-005).



Noise attenuation using f -x RNA 17

REFERENCES

Abma, R., and J. Claerbout, 1995, Lateral prediction for noise attenuation by t-x
and f-x techniques: Geophysics, 60, 1187–1896.

AllenAboutajdine, D., A. Adib, and A. Meziane, 1996, Fast adaptive algorithms for ar
parameters estimation using higher order statistics: IEEE Transactions on Signal
Processing, 44, 1998–2009.

Bakrim, M., D. Aboutajdine, and M. Najim, 1994, New cumulant-based approaches
for non-gaussian time varying ar models: Signal Processing, 139, 107–115.

Bekara, M., and M. van der Baan, 2009, Random and coherent noise attenuation by
empirical mode decomposition: Geophysics, 74, V89–V98.

Canales, L., 1984, Random noise reduction: 54th Annual International Meeting, Soc.
of Expl. Geophys., 525–527.

Claerbout, J., 1992, Earth soundings analysis: Processing versus inversion: Blackwell
Scientific Publications.

Crawley, S., J. Claerbout, and R. Clapp, 1999, Interpolation with smoothly nonsta-
tionary prediction-error filters: 69th Annual International Meeting, Soc. of Expl.
Geophys., 11541157.

Fomel, S., 2007, Shaping regularization in geophysical-estimation problems: Geo-
physics, 72, R29–R36.

——–, 2009, Adaptive multiple subtraction using regularized nonstationary regres-
sion: Geophysics, 74, V25–V33.

Guitton, A., and J. Claerbout, 2010, An algorithm for interpolation in the pyramid
domain: Geophysical Prospectin, 58, 965976.

Gulunay, N., 1986, Fxdecon and complex wiener prediction filter: 56th Annual Inter-
national Meeting, Soc. of Expl. Geophys., 279–281.

Hodgson, L., D. Whitcombe, S. Lancaster, and P. Lecocq, 2002, Frequency slice
filtering - a novel method of seismic noise attenuation: 72nd Annual International
Meeting, Soc. of Expl. Geophys., 2214–2218.

Huang, N. E., Z. Shen, S. R. Long, M. L. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C.
Tung, and H. H. Liu, 1998, The empirical mode decomposition and hilbert spectrum
for nonlinear and nonstationary time series analysis: Proc. R. Soc. London A, 454,
903995.

Hung, B., C. Notfors, and S. Ronen, 2004, Seismic trace interpolation using the
pyramid transform: 74th Annual International Meeting, Soc. of Expl. Geophys.,
20172020.

Izquierdo, M., M. Hernndez, and J. Anaya, 2006, Time-varying prediction filter for
structural noise reduction in ultrasonic nde: Ultrasonics, 44, e1001–e1005.

Liu, G., X. Chen, J. Li, J. Du, and J. Song, 2011a, Seismic noise attenuation using
nonstationary polynomial fitting: Applied Geophysics, 8, 18–26.

Liu, G., S. Fomel, and X. Chen, 2011b, Time-frequency analysis of seismic data using
local attributes: Geophysics, 76, P23–P34.

Liu, Y., and S. Fomel, 2010, Trace interpolation beyond aliasing using regularized
nonstationary autoregression: 80th Annual International Meeting, Soc. of Expl.
Geophys., 3662–3666.



18 Liu et al.

Naghizadeh, M., and M. Sacchi, 2009, f-x adaptive seismic-trace interpolation: Geo-
physics, 74, V9–V16.

Sacchi, M., and H. Kuehl, 2001, Arma formulation of fx prediction error filters and
projection filters: Journal of Seismic Exploration, 9, 185–197.

Sacchi, M., and M. Naghizadeh, 2009, Adaptive linear prediction filtering for random
noise attenuation: 79th Annual International Meeting, Soc. of Expl. Geophys.,
3347–3351.

Spitz, S., 1991, Seismic trace interpolation in the f-x domai: Geophysics, 56, 785794.
Sun, Y., and S. Ronen, 1996, The pyramid transform and its application to sig-

nal/noise separation: SEP Annual Report, 93, 161176.



China University of Petroleum, CUP, November 13, 2013

Noncausal f-x-y regularized nonstationary

prediction filtering for random noise attenuation

on 3D seismic data

Guochang Liu and Xiaohong Chen

ABSTRACT

Seismic noise attenuation is very important for seismic data analysis and interpre-
tation, especially for 3D seismic data. In this paper, we propose a novel method
for 3D seismic random noise attenuation by applying noncausal regularized non-
stationary autoregression (NRNA) in f -x-y domain. The proposed method, 3D
NRNA (f-x-y domain) is the extended version of 2D NRNA (f-x domain). f-x-y
NRNA can adaptively estimate seismic events of which slopes vary in 3D space.
The key idea of this paper is to consider that the central trace can be predicted
by all around this trace from all directions in 3D seismic cube, while the 2D f-x
NRNA just considers the middle trace can be predicted by adjacent traces along
one space direction. 3D f -x-y NRNA uses more information from circumjacent
traces than 2D f -x NRNA to estimate signals. Shaping regularization technology
guarantees the nonstationary autoregression problem can be realizable in math-
ematics with high computational efficiency. Synthetic and field data examples
demonstrate that, compared with f -x NRNA method, f -x-y NRNA can be more
effective in suppressing random noise and improve trace-by-trace consistency,
which are useful in conjunction with interactive interpretation and auto-picking
tools such as automatic event tracking.

INTRODUCTION

Seismic noise attenuation is very important for seismic data processing and inter-
pretation, especially for 3D seismic data. Among the methods of seismic noise at-
tenuation, prediction filtering is one of the most effective and most commonly used
methods, e.g., (Gulunay, 1986; Galbraith, 1984; Gulunay et al., 1993; Sacchi and
Kuehl, 2001). Prediction filtering can be implemented in f -x domain or t−x domain
(Hornbostel, 1991; Abma and Claerbout, 1995). Abma and Claerbout (1995) com-
pared f -x method and t − x method and gave the advantages and disadvantages of
both these methods. The proposed method in our paper belongs to the category of
f -x domain methods. The f -x prediction technique was introduced for random noise
attenuation on 2D poststack data by Canales (1984) and further developed by Gulu-
nay (1986). Wang and West (1991) and Hornbostel (1991) used noncausal filters for
random noise attenuation on stacked seismic data and obtain a good result. Linear
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prediction filtering states that the signal can be described by an autoregressive (AR)
model, which means that a superposition of linear events transforms into a superpo-
sition of complex sinusoids in the f -x domain. Sacchi and Kuehl (2001) utilized the
autoregressive-moving average (ARMA) structure of the signal to estimate a predic-
tion error filter (PEF) and applied ARMA model to attenuate random noise. Liu
et al. (2009) applied ARMA-based noncausal spatial prediction filtering to avoid the
model inconsistency.

As already noted, these above mentioned f -x methods assume seismic section
is composed of a finite number of linear events with constant dip in t − x domain.
To cope with the assumption continuous changes dips, short temporal and spatial
analysis windows are usually used in f -x prediction filtering. Except using window-
ing strategy, several nonstationary prediction filters are proposed and used in seismic
noise attenuation and interpolation. Naghizadeh and Sacchi (2009) proposed an adap-
tive f -x prediction filter, which was used to interpolate waveforms that have spatially
variant dips. Fomel (2009) developed a general method of regularized nonstationary
aoturegression (RNA) with shaping regularization (Fomel, 2007) for time domain in-
verse problems. Liu et al. (1991) propose a method for random noise attenuation in
seismic data by applying noncausal regularized nonstationary autoregression (NRNA)
in frequency domain, which is implemented for 2D seismic data. These nonstationary
methods can control algorithms adaptability to changes in local dip so that they can
process curved events.

If using f -x prediction filter to suppress random noise on 3D seismic data, one
need to run the 2D algorithm slice by slice (along inline x or crossline y). To use more
information to predict the effective signal in 3D data, several geophysicists extended
f -x prediction filtering to 3D case. Chase (1992) designs and applies 2-D prediction
filters in the plane defined by the inline and crossline directions for each temporal
frequency slice of the 3-D data volume. Ozdemir et al. (1999) applied f-x-y projection
filtering to attenuate random noise of seismic data with low poor signal to noise ratio
(SNR), in which the crucial step of 2-D spectral factorization is achieved through the
causal helical filter. Gulunay (2000) proposed using full-plane noncausal prediction
filters to process each frequency slice of the 3-D data. Wang (2002) applied f -x-y
3D prediction filter to implement seismic data interpolation and gave a good result.
Hodgson et al. (2002) presented a novel method of noise attenuation for 3D seismic
data, which applies a smoothing filter to each targeted frequency slice and allows
targeted filtering of selected parts of the frequency spectrum.

In this paper, we extend f -x NRNA method (Liu et al., 1991) to f -x-y case and
use f -x-y NRNA to attenuate random noise for 3D seismic data. The coefficients of
3D NRNA method are smooth along two space coordinates (x and y) in f -x-y domain.
This paper is organized as follows: First, we provide the theory for random noise on 3D
seismic data, paying particular attention to establishment of f -x-y NRNA equations
with constraints and implementation of it with shaping regularization. Then we
evaluate and compare the proposed method with f -x NRNA using synthetic and
real data examples and discuss the parameter selection problem associated with our
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algorithm.

METHODOLOGY

The review of f-x NRNA

Seismic section S(t, x) in f -x domain is predictable if it only includes linear events
in t − x domain. The relationship between the n-th trace and (n-i)-th trace can be
easily described as

Sn(f) =
M∑
i=1

ai(f)Sn−i(f), (1)

where M is the number of events in 2D seismic section. Eq. (1) describes forward
prediction equations, namely causal prediction filtering equations (Gulunay, 2000).
In the case of both forward and backward prediction equations (noncausal prediction
filter), Eq. 1 can be written as (Spitz, 1991; Gulunay, 2000; Naghizadeh and Sacchi,
2009; Liu et al., 1991)

Sn(f)=
M∑
i=1

aiSn−i(f)+
−M∑
i=−1

aiSn−i(f), (2)

where M is the parameter related to the number of events. Note that Eq. 2 implies
the assumption

∑M
i=1 aiSn−i(f)=0.5Sn(f)and

∑−M
i=−1 aiSn−i(f)=0.5Sn(f). Theoreti-

cally, aiin forward prediction equations is the complex conjugation of a−iin backward
equations (Galbraith, 1984). Gulunay (2000) pointed that it is possible to reduce the
order of the normal equations from 2M to M because the coefficients of noncausal
prediction filter have conjugate symmetry. f-x prediction filtering has the assump-
tion that the events of seismic section are linear. If seismic events are not linear,
or the amplitudes of wavelet are varying, they no longer follow linear or stationary
assumptions (Canales, 1984). One needs to perform f -x prediction filtering over
a short sliding window in time and space to cope with continuous changes in dips
(Naghizadeh and Sacchi, 2009). Fomel (2009) developed a general method of RNA
using shaping regularization technology, which is implemented for real number. Liu
et al. (1991) extended the RNA method to f -x domain for complex numbers and
applied it to seismic random noise attenuation for 2D seismic data. The f -x NRNA
is defined as (Liu et al., 1991)

εn(f) = Sn(f)−
M∑
i=1

an,i(f)Sn−i(f)−
−M∑
i=−1

an,i(f)Sn−i(f). (3)

Eq. 3 indicates that one trace noise-free in f -x domain can be predicted by
adjacent traces with the different weights an,i(f). Note that the weights an,i(f) is
varying along the space direction, which indicated by subscript i in an,i(f). In Eq.
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3, the coefficients ais the function of space i, but it is not in Eq. 2. When applying
f -x NRNA to seismic noise attenuation, we assume the prediction errorεn(f) is the

random noise and the predictable part
M∑
i=1

an,i(f)Sn−i(f) +
−M∑
i=−1

an,i(f)Sn−i(f) is the

signal. Finding spatial-varying coefficients an,i(f) form Eq. 3 is ill-posed problem
because there are more unknown variables than constraint equations. To obtain
the coefficients, we should add constraint equations. Shaping regularization (Fomel,
2009) can be used to solve the under-constrained problem (Liu et al., 1991). The
RNA method can also be used for seismic data processing in t-x-y domain, such as
seismic data interpolation (Liu and Fomel, 2011).

f-x-y NRNA for random noise attenuation

Two dimensional f -x NRNA only considers one space coordinate x. If we use f -x
NRNA on 3D seismic cube, we usually apply f -x RNA in one space slice. f -x NRNA
reduces the effectiveness because the plane event in 3D cube is predictable along
different directions rather than only one direction. Therefore, we should develop 3D
f -x-y NRNA to suppress random noise for 3D seismic data.
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Figure 1: The f -x-y prediction filter. The trace T33 is predicted from circumjacent
traces T11 ∼ T55(except itself T33). rna3d/. fig1

Next, we use Fig. 1 to illustrate the idea of f -x-y NRNA. The middle trace T33is
the one we want to predict. Trace T33 can be predicted from circumjacent traces
T11 ∼ T55(except itself T33). The prediction process includes all different directions.
For example, if we use T21to predict T33, we can estimate a corresponding coefficient
using the described algorithm in the following. f -x-y NRNA uses all around traces to
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predict the middle trace. Therefore, the prediction uses more information than f -x
NRNA. For all the traces in 3D cube, similar to the trace T33, we can use circumjacent
traces to predict them. Mathematically, we can write the prediction process as

Sx,y(f) =
M∑

i=−M,i 6=0

ai(f)Sx,y,i(f), (4)

where M and i are the number and index of circumjacent traces, respectively. In
the case of Fig. 1, M=24 and i is from 1 to 24. Note that Sx,y,i(f)indicates the 24
circumjacent traces around Sx,y(f). Eq. 4 is the equations of noncausal regularized
stationary autoregression. Similarly to f -x NRNA, considerng the nonstationary case,
we can obtain

S̃x,y(f) =
M∑

i=−M,i6=0

ax,y,i(f)Sx,y,i(f), (5)

where ax,y,i(f)is the space-varying coefficients, which means they have three free de-
grees, space axis x, space axis y and shift axis i. S̃x,y(f)can be regarded as the esti-
mation of noise-free signal. However, the coefficients ax,y,i(f) are not known. Once
we obtain the coefficients, we can estimate the effective signal using Eq. 5 Similar
to f -x NRNA, we use shaping regularization to solve this ill-posed problem. Here,
we assume that the coefficients ax,y,i(f) f -x-y RNA are smooth along two space axes
x and y, which is reasonable because the curved surface event in 3D seismic data
is locally plane. Therefore, we can obtain the following least square problem with
shaping regularization

min
ax,y,i(f)

||Sx,y(f)−
M∑

i=−M,i6=0

ax,y,i(f)Sx,y,i(f)||22 +R[ax,y,i(f)], (6)

where R[.] denotes shaping regularization term which constrains coefficients ax,y,i(f)
to be smooth along space axes. We use one coefficient with a given frequency and
a given shift (e.g., from T21 to T33 indicated by arrow in Fig. 1) to explain the
constraint in Eq. 6. This 3D cube of coefficient with a given frequency and a given
shift can be expressed as ax,y,i0(f0), which is smooth along with variables x and y. The
smooth constraint of coefficients is the objective of shaping regularization. Finally,
we use Eq. 6 to obtain obtain the complex coefficients of f -x-y RNA, and use Eq.
5 to achieve the estimation of signal.

Transform-base methods can also be used for seismic noise attenuation (Ma and
Plonka, 2010). Tang and Ma (1991) proposed to total-variation-based curvelet shrink-
age for 3D seismic data denoising in order to suppress nonsmooth artifacts caused by
the curvelet transform. Because the f -x-y NRNA method uses shaping regularization
to solve the ill-posed inverse problem and is complemented in frequency domain, it
has higher computation efficiency than curvelet-based methods.
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Figure 2: Synthetic benchmark 3D cube with one curved surface event (a) and noisy

data cube (b). rna3d/sin sin,cmp

Figure 3: (a) Travel time of the event in Fig. 2(a). (b) The imaginary part of f -x-y

NRNA coefficients at a given shift ax,y,i0(f) rna3d/sin tsin,flt

Figure 4: The results of f -x NRNA (a) and f -x-y NRNA (b). rna3d/sin tpre2d,tpre
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SYNTHETIC EXAMPLES

We demonstrate the effectiveness of the proposed f -x-y NRNA using two synthetic
dataset. The first synthetic example involves only one curved surface. Fig. 2(a)
shows the synthetic dataset. Three slices of Fig. 2(a) illustrate the Y=2.4 km,
X=2.4 km and Time=1 s, respectively. The following figures in this paper have the
same way for display. The traveltime of this surface is shifted sine function (Fig.
3(a)). We can find that the traveltime is not linear varying. Therefore, we cannot
use stationary f -x-y prediction filtering to estimate the effective signal. Fig. 5(b) is
the noisy data. This curved surface event is greatly contaminated by random noise.
We respectively use f -x NRNA and f-x-y NRNA to attenuate the random noise and
compare their results (Fig. 5(c)- 5(d)). The SNRs of f -x NRNA and f -x-y NRNA
are 0.34 and 2.4, respectively. Although f-x NRNA has suppressed a lot of random
noise, there are still some random noises in the result (Fig. 5(c)). Compared with
f -x NRNA, f -x-y NRNA gives a better result. The curved surface event is very clear
and consistent, which may be easier to automatic event tracking for interpretation.
Fig. 3(b) shows the imaginary part of f -x-y NRNA coefficients at a given shift
ax,y,i0(f), which are smooth along with space axes. From the slice with 20.833 Hz
(up slice in Fig. 3(b)), one can find that the coefficients reflect the information of
traveltime or time shifts between circumjacent traces (Fig. 3(a)). From the frontal
and lateral slices in Fig. 3(b), one can conclude that the coefficients are related to
dips of events from the frontal and lateral slices in Fig. 2(a). The coefficient is zero
if the event is horizontal (e.g. position B). The coefficients are respectively positive
and negative if the events are upgoing (e.g. position A) and downgoing (e.g. position
C). The estimated rusult of coefficients is consistent with theoretical analysis.

The second synthetic example is a synthetic shot gather with four hyperbolic
events (Fig. 5(a)). Here, we consider anisotropy of the propagating velocity, so that
there are intersecting events in Y slice but they are not intersecting in X slice (the
second and third events). Comparing the results of f -x NRNA (Fig 5(c)) and f -x-y
NRNA (Fig 5(d)), we can find that f -x-y RNA can remove more noise that f -x
NRNA, especially for poor signals (for example, far offset of the events indicated by
arrows in Fig. 5(a)- 5(d)). The SNRs of f -x NRNA and f -x-y NRNA are 0.95 and
2.61, respectively. Both of these synthetic examples demonstrate the proposed f -x-y
NRNA can be effectively use to attenuation random noise for 3D seismic data cube.

APPLICATION ON FIELD POSTSTACK DATA

The f -x-y NRNA method is applied to a 3D image after time migration (Fig. 6).
The shallow structures are simple plane layers (above 1 s) and the deep structures are
complex curved layers (below 1 s). We respectively apply f -x NRNA and f -x-y NRNA
to enhance the reflectors of this 3D image cube. Fig. 7 shows the imaginary part
of f -x-y NRNA coefficients at a given shift ax,y,i0(f). Similar to synthetic example,
the f -x-y NRNA coefficients are smooth and reflect the information of event dips. In
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Figure 5: (a) Synthetic 3D shot gather. (b) Noisy data. (c) The result of f -x RNA.

(d) The result of f -x-y RNA. rna3d/shot cmp0,cmp,tpre2d,tpre
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Figure 6: The 3D field data cube after time migration. rna3d/real data



28 Liu et al.

Figure 7: The imaginary part of f -x-y NRNA coefficients at a given shift ax,y,i0(f)

for real dataset. rna3d/real flt-np
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Figure 8: The slice X of field data cube. (a) Original data; (b) f -x NRNA; (c) f -x-y

NRNA. rna3d/real wi,wi-2,wi-3
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Figure 9: The slice Y of field data cube. (a) Original data; (b) f -x NRNA; (c) f -x-y

NRNA. rna3d/real wc,wc-2,wc-3
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Figure 10: The time slice of field data cube. (a) Original data; (b) f -x NRNA; (c)

f -x-y NRNA. rna3d/real wt,wt-2,wt-3



32 Liu et al.

this example, we use M=2 for f -x-y NRNA and M=8 for f -x NRNA, respectively.
Figs. 8(a)- 8(c) and 9(a)- 9(c) respectively shows the X and Y slices after f -x NRNA
noise attenuation and f -x-y NRNA noise attenuation. We can find that f -x-y NRNA
method can give a better result than f -x NRNA method. The result of f -x-y NRNA
has a much better lateral continuity. These two methods not only improve the shallow
plane events evidently (e.g. 0s -0.5s), but also improve the deep curved surface events
(e.g. the area indicated by ellipse). This is because these two methods both are
nonstationary methods, which is suitable for curved events. In addition, comparing
f -x NRNA and f -x-y NRNA methods from time slices (Fig. 10(a)- 10(c)), one can
also see that the f -x-y NRNA gives more consistent result. The lateral continuity and
trace-by-trace consistency of the reflections are crucial in structural interpretation of
seismic data by reflection picking especially for the auto-picking tools of interactive
interpretation systems (Fomel, 2010).

CONCLUSIONS

We have proposed a novel method for seismic noise attenuation using f -x-y NRNA
for 3D seismic data. f-x-y NRNA is the 3D extension of f -x NRNA. By using more
information to predict the seismic signal, the f -x-y NRNA improves the denoising
result for 3D seismic data. The varying coefficients of the f-x-y NRNA are smooth
along space coordinates for a given direction. The smoothness is controlled by shaping
regularization, which has the key parameter: the smooth radius. The smooth radius
can be selected by user according to the smoothness of assumed coefficients. This
approach does not require breaking the input data into local windows along space
axis, although it is conceptually analogous to sliding spatial windows with maximum
overlap. Execution time of f -x-y NRNA is reduced by iteration inversion and shaping
regularization. Synthetic and field data examples both confirm that the proposed
f -x-y RNA approach can be significantly more effective in noise attenuation and
consistency improvement than f -x RNA for 3D seismic data. Therefore, it may be
useful in conjunction with interactive interpretation systems and auto-picking tools
such as automatic event tracking.
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