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In chapter ?? we discussed methods of imaging horizontal reflectors and of estimating
velocity v(z) from the offset dependence of seismic recordings. In this chapter, we turn our
attention to imaging methods for dipping reflectors. These imaging methods are usually
referred to as “migration” techniques.

Offset is a geometrical nuisance when reflectors have dip. For this reason, we develop
migration methods here and in the next chapter for forming images from hypothetical
zero-offset seismic experiments. Although there is usually ample data recorded near zero-
offset, we never record purely zero-offset seismic data. However, when we consider offset
and dip together in chapter ?? we will encounter a widely-used technique (dip-moveout)
that often converts finite-offset data into a useful estimate of the equivalent zero-offset
data. For this reason, zero-offset migration methods are widely used today in industrial
practice. Furthermore the concepts of zero-offset migration are the simplest starting point
for approaching the complications of finite-offset migration.

MIGRATION DEFINED

The term “migration” probably got its name from some association with movement. A
casual inspection of migrated and unmigrated sections shows that migration causes many
reflection events to shift their positions. These shifts are necessary because the apparent
positions of reflection events on unmigrated sections are generally not the true positions of
the reflectors in the earth. It is not difficult to visualize why such “acoustic illusions” occur.
An analysis of a zero-offset section shot above a dipping reflector illustrates most of the key
concepts.

A dipping reflector

Consider the zero-offset seismic survey shown in Figure 1. This survey uses one source-
receiver pair, and the receiver is always at the same location as the source. At each position,
denoted by S1, S2, andS3 in the figure, the source emits waves and the receiver records the
echoes as a single seismic trace. After each trace is recorded, the source-receiver pair is
moved a small distance and the experiment is repeated.

As shown in the figure, the source at S2 emits a spherically-spreading wave that bounces
off the reflector and then returns to the receiver at S2. The raypaths drawn between Si

and Ri are orthogonal to the reflector and hence are called normal rays. These rays reveal
how the zero-offset section misrepresents the truth. For example, the trace recorded at S2

is dominated by the reflectivity near reflection point R2, where the normal ray from S2 hits
the reflector. If the zero-offset section corresponding to Figure 1 is displayed, the reflectivity
at R2 will be falsely displayed as though it were directly beneath S2, which it certainly is
not. This lateral mispositioning is the first part of the illusion. The second part is vertical:
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Figure 1: Raypaths and wave-
fronts for a zero-offset seismic line
shot above a dipping reflector. The
earth’s propagation velocity is con-
stant.

if converted to depth, the zero-offset section will show R2 to be deeper than it really is.
The reason is that the slant path of the normal ray is longer than a vertical shaft drilled
from the surface down to R2.

Dipping-reflector shifts

A little geometry gives simple expressions for the horizontal and vertical position errors on
the zero-offset section, which are to be corrected by migration. Figure 2 defines the required
quantities for a reflection event recorded at S corresponding to the reflectivity at R. The

Figure 2: Geometry of the nor-
mal ray of length d and the vertical
“shaft” of length z for a zero-offset
experiment above a dipping reflec-
tor.

two-way travel time for the event is related to the length d of the normal ray by

t =
2 d

v
, (1)

where v is the constant propagation velocity. Geometry of the triangle CRS shows that the
true depth of the reflector at R is given by

z = d cos θ , (2)

and the lateral shift between true position C and false position S is given by

∆x = d sin θ =
v t

2
sin θ . (3)

It is conventional to rewrite equation (2) in terms of two-way vertical traveltime τ :

τ =
2 z

v
= t cos θ . (4)
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Thus both the vertical shift t− τ and the horizontal shift ∆x are seen to vanish when the
dip angle θ is zero.

Hand migration

Geophysicists recognized the need to correct these positioning errors on zero-offset sections
long before it was practical to use computers to make the corrections. Thus a number
of hand-migration techniques arose. It is instructive to see how one such scheme works.
Equations (3) and (4) require knowledge of three quantities: t, v, and θ. Of these, the
event time t is readily measured on the zero-offset section. The velocity v is usually not
measurable on the zero offset section and must be estimated from finite-offset data, as was
shown in chapter ??. That leaves the dip angle θ. This can be related to the reflection
slope p of the observed event, which is measurable on the zero-offset section:

p0 =
∂t

∂y
, (5)

where y (the midpoint coordinate) is the location of the source-receiver pair. The slope p0

is sometimes called the “time-dip of the event” or more loosely as the “dip of the event”.
It is obviously closely related to Snell’s parameter, which we discussed in chapter ??. The
relationship between the measurable time-dip p0 and the dip angle θ is called “Tuchel’s
law”:

sin θ =
v p0

2
. (6)

This equation is clearly just another version of equation (??), in which a factor of 2 has
been inserted to account for the two-way traveltime of the zero-offset section.

Rewriting the migration shift equations in terms of the measurable quantities t and p
yields usable “hand-migration” formulas:

∆x =
v2 p t

4
(7)

τ = t

√
1 − v2p2

4
. (8)

Hand migration divides each observed reflection event into a set of small segments for which
p has been measured. This is necessary because p is generally not constant along real seismic
events. But we can consider more general events to be the union of a large number of very
small dipping reflectors. Each such segment is then mapped from its unmigrated (y, t)
location to its migrated (y, τ) location based on the equations above. Such a procedure is
sometimes also known as “map migration.”

Equations (7) and (8) are useful for giving an idea of what goes on in zero-offset mi-
gration. But using these equations directly for practical seismic migration can be tedious
and error-prone because of the need to provide the time dip p as a separate set of input
data values as a function of y and t. One nasty complication is that it is quite common to
see crossing events on zero-offset sections. This happens whenever reflection energy coming
from two different reflectors arrives at a receiver at the same time. When this happens
the time dip p becomes a multi-valued function of the (y, t) coordinates. Furthermore, the
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recorded wavefield is now the sum of two different events. It is then difficult to figure out
which part of summed amplitude to move in one direction and which part to move in the
other direction.

For the above reasons, the seismic industry has generally turned away from hand-
migration techniques in favor of more automatic methods. These methods require as inputs
nothing more than

• The zero-offset section

• The velocity v .

There is no need to separately estimate a p(y, t) field. The automatic migration program
somehow “figures out” which way to move the events, even if they cross one another. Such
automatic methods are generally referred to as “wave-equation migration” techniques, and
are the subject of the remainder of this chapter. But before we introduce the automatic
migration methods, we need to introduce one additional concept that greatly simplifies the
migration of zero-offset sections.

A powerful analogy

Figure 3 shows two wave-propagation situations. The first is realistic field sounding. The

Exploding Reflectors
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Figure 3: Echoes collected with a source-receiver pair moved to all points on the earth’s
surface (left) and the “exploding-reflectors” conceptual model (right).

second is a thought experiment in which the reflectors in the earth suddenly explode. Waves
from the hypothetical explosion propagate up to the earth’s surface where they are observed
by a hypothetical string of geophones.

Notice in the figure that the ray paths in the field-recording case seem to be the same
as those in the exploding-reflector case. It is a great conceptual advantage to imagine
that the two wavefields, the observed and the hypothetical, are indeed the same. If they are
the same, the many thousands of experiments that have really been done can be ignored,
and attention can be focused on the one hypothetical experiment. One obvious difference
between the two cases is that in the field geometry waves must first go down and then
return upward along the same path, whereas in the hypothetical experiment they just go
up. Travel time in field experiments could be divided by two. In practice, the data of the
field experiments (two-way time) is analyzed assuming the sound velocity to be half its true
value.
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Limitations of the exploding-reflector concept

The exploding-reflector concept is a powerful and fortunate analogy. It enables us to think
of the data of many experiments as though it were a single experiment. Unfortunately, the
exploding-reflector concept has a serious shortcoming. No one has yet figured out how to
extend the concept to apply to data recorded at nonzero offset. Furthermore, most data is
recorded at rather large offsets. In a modern marine prospecting survey, there is not one
hydrophone, but hundreds, which are strung out in a cable towed behind the ship. The
recording cable is typically 2-3 kilometers long. Drilling may be about 3 kilometers deep.
So in practice the angles are big. Therein lie both new problems and new opportunities,
none of which will be considered until chapter ??.

Furthermore, even at zero offset, the exploding-reflector concept is not quantitatively
correct. For the moment, note three obvious failings: First, Figure 4 shows rays that are
not predicted by the exploding-reflector model. These rays will be present in a zero-offset
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Figure 4: Two rays, not predicted by the exploding-reflector model, that would nevertheless
be found on a zero-offset section.

section. Lateral velocity variation is required for this situation to exist.

Second, the exploding-reflector concept fails with multiple reflections. For a flat sea
floor with a two-way travel time t1, multiple reflections are predicted at times 2t1, 3t1, 4t1,
etc. In the exploding-reflector geometry the first multiple goes from reflector to surface, then
from surface to reflector, then from reflector to surface, for a total time 3t1. Subsequent
multiples occur at times 5t1, 7t1, etc. Clearly the multiple reflections generated on the
zero-offset section differ from those of the exploding-reflector model.

The third failing of the exploding-reflector model is where we are able to see waves
bounced from both sides of an interface. The exploding-reflector model predicts the waves
emitted by both sides have the same polarity. The physics of reflection coefficients says
reflections from opposite sides have opposite polarities.

HYPERBOLA PROGRAMMING

Consider an exploding reflector at the point (z0, x0). The location of a circular wave front
at time t is v2t2 = (x − x0)2 + (z − z0)2. At the surface, z = 0, we have the equation of
the hyperbola where and when the impulse arrives on the surface data plane (t, x). We can
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make a “synthetic data plane” by copying the explosive source amplitude to the hyperbolic
locations in the (t, x) data plane. (We postpone including the amplitude reduction caused
by the spherical expansion of the wavefront.) Forward modeling amounts to taking every
point from the (z, x)-plane and adding it into the appropriate hyperbolic locations in the
(t, x) data plane. Hyperbolas get added on top of hyperbolas.
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Figure 5: Point response model to data and converse.

Now let us think backwards. Suppose we survey all day long and record no echos except
for one echo at time t0 that we can record only at location x0. Our data plane is thus filled
with zero values except the one nonzero value at (t0, x0). What earth model could possibly
produce such data?

An earth model that is a spherical mirror with bottom at (z0, x0) will produce a reflection
at only one point in data space. Only when the source is at the center of the circle will all
the reflected waves return to the source. For any other source location, the reflected waves
will not return to the source. The situation is summarized in Figure 5.

Above explains how an impulse at a point in image space can transform to a hyperbola
in data space, likewise, on return, an impulse in data space can transform to a semicircle in
image space. We can simulate a straight line in either space by superposing points along a
line. Figure 6 shows how points making up a line reflector diffract to a line reflection, and
how points making up a line reflection migrate to a line reflector.

First we will look at the simplest, most tutorial migration subroutine I could devise.
Then we will write an improved version and look at some results.
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Figure 6: Left is a superposition of many hyperbolas. The top of each hyperbola lies along
a straight line. That line is like a reflector, but instead of using a continuous line, it is a
sequence of points. Constructive interference gives an apparent reflection off to the side.
Right shows a superposition of semicircles. The bottom of each semicircle lies along a line
that could be the line of an observed plane wave. Instead the plane wave is broken into
point arrivals, each being interpreted as coming from a semicircular mirror. Adding the
mirrors yields a more steeply dipping reflector.
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Tutorial Kirchhoff code

Subroutine kirchslow() below is the best tutorial Kirchhoff migration-modeling pro-
gram I could devise. A nice feature of this program is that it works OK while the edge com-
plications do not clutter it. The program copies information from data space data(it,iy)
to model space modl(iz,ix) or vice versa. Notice that of these four axes, three are in-
dependent (stated by loops) and the fourth is derived by the circle-hyperbola relation
t2 = τ2 + x2/v2. Subroutine kirchslow() for adj=0 copies information from model space
to data space, i.e. from the hyperbola top to its flanks. For adj=1, data summed over
the hyperbola flanks is put at the hyperbola top. Notice how this program has the ability

user/gee/kirchslow.c

44 for ( i x =0; ix < nx ; i x++) {
45 for ( i y =0; iy < nx ; i y++) {
46 for ( i z =0; i z < nt ; i z++) {
47 z = t0+dt∗ i z ; /∗ t r a v e l−t ime depth ∗/
48 t = hypotf ( z , ( ix−i y )∗dx / v e l h a l f ) ;
49 i t = 0 .5 + ( t−t0 ) / dt ;
50 id = i t + iy ∗nt ;
51 im = i z + ix ∗nt ;
52

53 i f ( i t < nt ) {
54 i f ( adj ) modl [ im ] += data [ id ] ;
55 else data [ id ] += modl [ im ] ;
56 }
57 }
58 }
59 }

to create a hyperbola given an input impulse in (x, z)-space, and a circle given an input
impulse in (x, t)-space.

The three loops in subroutine kirchslow() may be interchanged at will without chang-
ing the result. To emphasize this flexibility, the loops are set at the same indentation
level. We tend to think of fixed values of the outer two loops and then describe what hap-
pens on the inner loop. For example, if the outer two loops are those of the model space
modl(iz,ix), then for adj=1 the program sums data along the hyperbola into the “fixed”
point of model space. When loops are reordered, we think differently and opportunities
arise for speed improvements.

Fast Kirchhoff code

Subroutine kirchslow() can easily be speeded by a factor that is commonly more than
30. The philosopy of this book is to avoid minor optimizations, but a factor of 30 really
is significant, and the analysis required for the speed up is also interesting. Much of the
inefficiency of kirchslow() arises when xmax � vtmax because then many values of t are
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computed beyond tmax. To avoid this, we notice that for fixed offset (ix-iy) and variable
depth iz, as depth increases, time it eventually goes beyond the bottom of the mesh and,
as soon as this happens, it will continue to happen for all larger values of iz. Thus we can
break out of the iz loop the first time we go off the mesh to avoid computing anything
beyond as shown in subroutine kirchfast(). (Some quality compromises, limiting the
aperture or the dip, also yield speedup, but we avoid those.) Another big speedup arises
from reusing square roots. Since the square root depends only on offset and depth, once
computed it can be used for all ix. Finally, these changes of variables have left us with more
complicated side boundaries, but once we work these out, the inner loops can be devoid of
tests and in kirchfast() they are in a form that is highly optimizable by many compilers.

user/gee/kirchfast.c

45 for ( ib= −nx ; ib <= nx ; ib++) { /∗ o f f s e t ∗/
46 for ( i z =1; i z < nt ; i z++) { /∗ t r a v e l−t ime depth ∗/
47 z = t0 + dt ∗ i z ;
48 t = hypotf ( z , ib ∗dx/vrms [ i z ] ) ;
49 i t = 0 .5 + ( t − t0 ) / dt ;
50 i f ( i t > nt ) break ;
51

52 amp = ( z / t ) ∗ s q r t f ( nt∗dt / t ) ;
53 for ( i x=SF MAX(0 ,− ib ) ; ix<SF MIN(nx , nx−ib ) ; i x++) {
54 id = i t + ( ix+ib )∗ nt ;
55 im = i z + ix ∗nt ;
56

57 i f ( adj ) modl [ im ] += data [ id ]∗amp ;
58 else data [ id ] += modl [ im ]∗amp ;
59 }
60 }
61 }

Originally the two Kirchhoff programs produced identical output, but finally I could not
resist adding an important feature to the fast program, scale factors z/t = cos θ and 1/

√
t

that are described elsewhere. The fast program allows for velocity variation with depth.
When velocity varies laterally the story becomes much more complicated.

Figure 7 shows an example. The model includes dipping beds, syncline, anticline, fault,
unconformity, and buried focus. The result is as expected with a “bow tie” at the buried
focus. On a video screen, I can see hyperbolic events originating from the unconformity
and the fault. At the right edge are a few faint edge artifacts. We could have reduced or
eliminated these edge artifacts if we had extended the model to the sides with some empty
space.

Kirchhoff artifacts

Reconstructing the earth model with the adjoint option in kirchfast() on this page yields
the result in Figure 8. The reconstruction generally succeeds but is imperfect in a num-
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Figure 7: Left is the model. Right is diffraction to synthetic data.

Figure 8: Left is the original model. Right is the reconstruction.
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ber of interesting ways. Near the bottom and right side, the reconstruction fades away,
especially where the dips are steeper. Bottom fading results because in modeling the data
we abandoned arrivals after a certain maximum time. Thus energy needed to reconstruct
dipping beds near the bottom was abandoned. Likewise along the side we abandoned rays
shooting off the frame.

Difficult migrations are well known for producing semicircular reflectors. Here we have
controlled everything fairly well so none are obvious, but on a video screen I see some
semicircles.

Next is the problem of the spectrum. Notice in Figure 8 that the reconstruction lacks
the sharp crispness of the original. It is shown in chapter ?? that the spectrum of our
reconstruction loses high frequencies by a scale of 1/|ω|. Philosophically, we can think of
the hyperbola summation as integration, and integration boosts low frequencies. Figure 9
shows the average over x of the relevant spectra. First, notice the high frequencies are weak

Figure 9: Top is the spectrum of
the the model, i.e. the left side of
Figure 8. Bottom is the spectrum of
the the reconstruction, i.e. the right
side of Figure 8. Middle is the recon-
struction times frequency f .

because there is little high frequency energy in the original model. Then notice that our
cavalier approach to interpolation created more high frequency energy. Finally, notice that
multiplying the spectrum of our migrated model by frequency, f , brought the important
part of the spectral bands into agreement. This suggests applying an |ω| filter to our
reconstruction, or

√
−iω operator to both the modeling and the reconstruction, an idea

implemented in subroutine halfint() on page ??.

Neither of these Kirchhoff codes addresses the issue of spatial aliasing. Spatial aliasing
is a vexing issue of numerical analysis. The Kirchhoff codes shown here do not work as
expected unless the space mesh size is suitably more refined than the time mesh. Figure 10
shows an example of forward modeling with an x mesh of 50 and 100 points. (Previous
figures used 200 points on space. All use 200 mesh points on the time.) Subroutine
kirchfast() on page 9 does interpolation by moving values to the nearest neighbor of
the theoretical location. Had we taken the trouble to interpolate the two nearest points,
our results would have been a little better, but the basic problem (resolved in chapter ??)
would remain.

Sampling and aliasing

Spatial aliasing means insufficient sampling of the data along the space axis. This difficulty
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Figure 10: Left is model. Right is synthetic data from the model. Top has 50 points on
the x-axis, bottom has 100.
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is so universal, that all migration methods must consider it.

Data should be sampled at more than two points per wavelength. Otherwise the wave
arrival direction becomes ambiguous. Figure 11 shows synthetic data that is sampled with
insufficient density along the x-axis. You can see that the problem becomes more acute at

Figure 11: Insufficient spatial sam-
pling of synthetic data. To better
perceive the ambiguity of arrival an-
gle, view the figures at a grazing an-
gle from the side.

high frequencies and steep dips.

There is no generally-accepted, automatic method for migrating spatially aliased data.
In such cases, human beings may do better than machines, because of their skill in rec-
ognizing true slopes. When the data is adequately sampled however, computer migrations
give better results than manual methods.

Kirchhoff migration of field data

Figure 12 shows migrated field data.

The on-line movie behind the figure shows the migration before and after amplitude
gain with time. You can get a bad result if you gain up the data, say with automatic gain
or with t2, for display before doing the migration. What happens is that the hyperbola
flanks are then included incorrectly with too much strength.

The proper approach is to gain it first with
√

t which converts it from 3-D wavefields to
2-D. Then migrate it with a 2-D migration like kirchfast(), and finally gain it further for
display (because deep reflectors are usually weaker).
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Figure 12: Kirchhoff migration of Figure ??.


