
Efficient Geophysical
Research in Julia

Aaron Stanton, Mauricio D. Sacchi and Nasser Kazemi
EAGE open source workshop (Vienna 2016)

1	

Outline

•  Motivation
•  Julia
•  Seismic.jl
•  Examples
•  Conclusions

2	

Motivation

•  Matlab is a great prototyping language
–  easy to understand, compact code
–  many built in functions for linear algebra and plotting

•  But…
–  inefficient for large problems
–  not open source

•  Compiled languages are great for implementation
–  efficient for large problems
–  support all forms of parallelism

•  But…
–  difficult to follow
–  inefficient to code and debug

3	

Motivation

•  Julia presents a new opportunity with Matlab-like
syntax, C-like performance, and is free and open
source

•  This allows SAIG to make efficient, easy to read
prototypes for our sponsors that can be readily
implemented in their systems

4	

Julia

•  Released in 2012
•  Completely open source with MIT license
•  Just-In-Time compiler

–  compiled after execution begins
–  has access to more information than static compilers

•  Sophisticated type system
•  Multiple dispatch
•  Rich library of linear algebra and plotting functions
•  Distributed and shared memory parallelism
•  Pass-by-reference (pointers)
•  Directly call C-libraries with no overhead

5	

Julia’s Motivations

We want a language that’s open source, with a liberal license.
We want the speed of C with the dynamism of Ruby. We want a
language that’s homoiconic, with true macros like Lisp, but with
obvious, familiar mathematical notation like Matlab. We want
something as usable for general programming as Python, as easy
for statistics as R, as natural for string processing as Perl, as
powerful for linear algebra as Matlab, as good at gluing
programs together as the shell. Something that is dirt simple to
learn, yet keeps the most serious hackers happy. We want it
interactive and we want it compiled.

 (Did we mention it should be as fast as C?)

6	

Matlab-like syntax

Matlab
	

y = zeros(nx1,nx2,nx3,nx4);
for iw = 1 : nw

 y(:) = d(iw,:)
 x = y
 for iter = 1 : Niter
 Y = fftn(y);
 Y = Threshold(Y,p(iter));
 y = ifftn(Y);
 y = a*x + (1 - a*T).*y
 end
 d(iw,:) = y(:)

end
	

	

Julia
	

y = zeros(nx1,nx2,nx3,nx4);
for iw = 1 : nw

 y[:] = d[iw,:]
 x = copy(y)
 for iter = 1 : Niter
 Y = fft(y);
 Y = Threshold(Y,p[iter]);
 y = ifft(Y);
 y = a*x + (1 - a*T).*y
 end
 d[iw,:] = y[:]

end
	

	

	
 7	

Example: For-Loops

•  Multi-level for-loop:

a = 0.0
for j1=1:300;

 for j2 =1:300;
 for j3=1:300;
 for j4=300;
 a += 1.0;
 end
 end
 end

end

•  Matlab: 59.266124 seconds
•  Julia: 1.368727 seconds

8	

@+me	
 include(“foo.jl”)	

	

1.368727	
 seconds	
 	

(27.01	
 M	
 alloca+ons:	
 	

412.291	
 MB)	

Example: For-Loops

•  Multi-level for-loop:

function foo()
a = 0.0
for j1=1:300;

 for j2 =1:300;
 for j3=1:300;
 for j4=300;
 a += 1.0;
 end
 end
 end

end
end

•  Matlab: 59.266124 seconds
•  Julia: 0.026339 seconds

9	

@+me	
 foo()	

	

0.026339	
 seconds	
 	

(6.97	
 k	
 alloca+ons:	
 	

326.946	
 KB)	

Example: Calling a C library

t1 = ccall((:time, "libc"), Int32, ())
a = 0
for i = 1 : 1e4

 for j = 1 : 1e4
 a += 1
 end

end
t2 = ccall((:time, "libc"), Int32, ())

println("This program took ",t2 - t1," seconds.")

OUTPUT: This program took 6 seconds.

10	

Example: Parallelism

a = @parallel (+) for i=1:1e6
 randn()

end

addprocs(20); foo();

julia -p 20 foo.jl

julia --machinefile nodes.txt foo.jl

omplace -nt 12 julia --machinefile nodes.txt foo.jl

11	

Seismic.jl

12	

Installation

13	

Pkg.add(“Seismic”)	

14	

15	

Basic usage

16	

using PyPlot,Seismic;

download("http://certmapper.cr.usgs.gov/nersl/NPRA/seismic/
1979/616_79/PROCESSED/616_79_PR.SGY","616_79_PR.SGY");

SegyToSeis("616_79_PR.SGY","616_79_PR.seis");

d,h,e = SeisRead("616_79_PR.seis");

SeisPlot(d[1:500,:],e,cmap="PuOr",wbox=9);

Basic usage

17	

Basic usage

18	

using PyPlot,Seismic;

download("http://s3.amazonaws.com/teapot/
npr3_gathers.sgy","npr3_gathers.sgy")

SegyToSeis("npr3_gathers.sgy","npr3_gathers.seis");

SeisGeometry("npr3_gathers.seis",ang=90,
 omx=788937,omy=938845,
 dmx=110,dmy=110,oh=0,
 oaz=0,dh=420,daz=45)

h = SeisReadHeaders("npr3_gathers.seis")

im1 = SeisPlotCoordinates(h,style="sxsygxgy")
im2 = SeisPlotCoordinates(h,style="fold",cmap="jet",vmin=0,vmax=50,
 aspect="auto",xlabel="imx",ylabel="imy")

Basic usage

19	

Basic usage

20	

Data format

•  The .seis file format is a clone of madagascar and
SEPLIB’s format (.rsf)

•  a .seis file is just a text file with information and file
paths to the data and the headers

•  Environmental variable DATAPATH can be set to
store your data and headers in a particular
directory, but the default is the current directory

•  Ntraces x Nsamples of Binary IEEE floats

21	

Header format

22	

•  For each trace the header is stored as type Header
•  Ntraces x 31 Binary IEEE floats/integers
•  To see all fields type “names(Header)”

Package Contents

•  Utilities
•  Processing
•  Imaging
•  Solvers

23	

Utilities

•  Conversion to/from SEGY, SU, and RSF formats
•  Reading and writing of internal format
•  Windowing
•  Geometry
•  Header statistics
•  Sorting
•  Binning
•  Patching/UnPatching
•  Processing on groups of traces

24	

Processing

•  Semblance
•  NMO
•  Mute
•  Stack
•  Bandpass and FK fan filtering
•  Radon transform
•  5D interpolation
•  Structural Smoothing
•  FX deconvolution
•  Plane wave destruction for dip estimation
•  …

25	

Imaging

•  Pre-stack time migration
•  Wave equation migration, modeling, and least

squares migration

26	

Solvers

•  Dot product test
•  Memory or disk based preconditioned conjugate

gradients
•  Iteratively Reweighted Least Squares (IRLS)
•  Fast Iterative Soft Thresholding Algorithm (FISTA)

27	

Examples

28	

Calling POCS Interpolation

using Seismic
dpocs = Seismic.pocs(ddec,Niter=100,fmax=60,dt=0.004);

29	

Interpolation input

30	

Interpolation output

31	

Calling Plane Wave Destruction

using Seismic
download("http://ualberta.ca/~kstanton/files/
kevin_0off_velocity.su","kevin_0off_velocity.su");
SegyToSeis("kevin_0off_velocity.su","kevins_model",{"format"=>"su"});
d,h,e = SeisRead("kevins_model");
coh,pp,res = SeisPWD(d,w1=30,w2=20,dx=8,dz=4);

32	

Estimated reflector normals

33	

Conclusions

•  Julia can be used for fast prototyping as well as
large scale production

•  Julia programs are easy to follow for
implementation in other languages

•  We developed a package in Julia that is part of the
ecosystem of Julia packages: Pkg.add(“Seismic”)
–  Utilities
–  Processing
–  Imaging
–  Inversion

•  Additional closed-source packages are available to
SAIG sponsors

34	

References

www.julialang.org

www.seismic.physics.ualberta.ca

35	

Acknowledgements

•  Thanks to the creators of Julia and to Sam Kaplan
for introducing us to Julia

•  Thanks to the sponsors of the Signal Analysis and
Imaging Group for their generous support

36	

Contact us:

kstanton@ualberta.ca

msacchi@ualberta.ca

kazemino@ualberta.ca

37	

