
Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

Leveraging Madagascar for 
Reproducible Large-scale Cluster 

and Cloud Computing 

Jeffrey Shragge and Toby Potter 
The University of Western Australia   



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

Geophysics and Big Data 

Industrial-scale Computing  “SME* Computing” 
•  Revenue drivers:  

•  Students, research outputs 
•  Difficult for SMEs to own large-

scale resources 
•  Public clusters (competitive) 
•  Cloud computing ($$$) 

•  Goal: open-source, license-free 
research platform 

•  Revenue drivers:  
•  Oil and gas production 

•  Justify ownership of industrial-
scale compute resources 

•  3D TTI RTM, multiparam FWI 

*SME = Small-Medium Enterprise 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

•  Madagascar: A Quick Refresher 

•  Madagascar for Cluster-scale Research 

•  Madagascar in the Cloud  

Outline 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

•  Framework for reproducible computational experiments 
•  General multi-dimensional data analysis package  
•  Data files use a regularly sampled format (RSF) 

–  ASCII metadata file linked to binary data file 

•  M8R programs use common API for file I/O and parameter passing 
–  Generic data handling tools for RSF format 
–  Specialized / domain-specific tools (e.g., Kirchhoff prestack migration) 
–  Growing user-contributed program base (i.e., research outputs) 
–  API: C/C++, f90, Python, Java, Matlab/Octave	

~user/MyProject/file.rsf /scratch/user/file.rsf@ 

What is Madagascar (M8R)? 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

•  Data files used in processing flows with I/O linked by common API 
–  Interchangeable Flow commands linked by Unix-style pipes: | 

	
	

•  Processing flows written as SConstruct scripts 
–  Python syntax with Madagascar project extensions 

•  Use software construction (scons) package to run SConstruct flows 
–  Assess which parts of are up-to-date, and which need to be rerun 

	
	

What is Madagascar (M8R)? 

Input1.rsf 

Input2.rsf 
Program1 Program2 Output2.rsf 

Parameters Parameters 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

M8R scons Extensions – myproj.rsf 

Object Description 
Flow() Processing flow command linking input/output files, 

parameters and programs 
Plot() Generate an intermediate plot files 

Result() Generate a final plot file (i.e. for LaTeX manuscript) 
Fetch() Retrieve data file from remote server (ssh) 

Flow(Target files, Source files, Commands) 

Flow(output,’input1 input2’,  
 ‘sfmath other=${SOURCES[1]} output=“input+other” ’) 

< input1.rsf /path/to/sfmath a=${SOURCES[1]} output=“input+a” > output.rsf 

•  Generic SConstruct usage 

•  Example of SConstruct usage: 

•  Interpreted output 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

SConstruct – Serial Looping 

from	rsf.proj	import	*		 	#	.	.	Import	Madagascar	project	rules	
		
	

sline	=	range(0,1000,1)	 	#	.	.	Set	up	integer	array	
	

#	.	.	Loop	over	array	of	1000	objects	
		
for	iss	in	sline:	
						stag	=	’04%d’	%iss		
						Flow(‘image’+stag,’data’+stag,’my_migra0on_code	par1=…	‘)	
							
		
	

#	.	.	Add	together	object	
Flow(‘image’,map(lambda	x:	‘image-%04d’,’add	${SOURCES[1:1000]}‘)	
End() 	 	 	#	.	.	AddiKonal	Madagascar	framework	commands	

SConstruct Example – Serial Looping 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

•  Madagascar: A Quick Refresher 

•  Madagascar for Cluster-scale Research 

•  Madagascar in the Cloud  

Outline 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

M8R scons Extensions – mycluster.py*  

Object Description 
Flow() Processing flow command linking input/output files, parameters 

and programs 
Plot() Generate an intermediate plot files 

Result() Generate a final plot file (i.e. for LaTeX manuscript) 
Fetch() Retrieve data file from remote server (ssh) 

Cluster() Provide information on cluster resource requirements 
Queue name, processors per node, walltime (serial) 

Fork() Demarcate parallel section; indicate # of nodes,  
tasks / node, walltime (parallel) 

Iterate() Indicate limit of parallel region 
Join() End of Fork() section 

*With acknowledgment to Jeff Godwin, Tongning Yang 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

from	rsf.proj	import	*		 	#	.	.	Import	Madagascar	project	rules	
		
	

sline	=	range(0,1000,1)	 	#	.	.	Set	up	integer	array	
	

#	.	.	Loop	over	array	of	1000	objects	
		
for	iss	in	sline:	
						stag	=	’04%d’	%iss		
						Flow(‘image’+stag,’data’+stag,’my_migra0on_code	par1=…	‘)	
							
		
	

#	.	.	Add	together	object	
Flow(‘image’,map(lambda	x:	‘image-%04d’,’add	${SOURCES[1:1000]}‘)	
End() 	 	 	#	.	.	AddiKonal	Madagascar	framework	commands	

SConstruct Example – Serial Looping 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

from	rsf.cluster	import	*			#	.	.	Import	Madagascar	project	rules	for	your	cluster	
Cluster(name=’my_queue’,0me=60,ppn=24)	

sline	=	range(0,1000,1)	 	#	.	.	Set	up	integer	array	
	
	

#	.	.	Loop	over	array	of	1000	objects	with	50	jobs	on	each	of	20	nodes	
Fork(0me=10,ipn=50,nodes=20)	
for	iss	in	sline:	
						stag	=	’04%d’	%iss		
						Flow(‘image’+stag,’data’+stag,’my_migra0on_code	par1=…	‘)	
						Iterate()	
Join()	
	

#	.	.	Add	together	object	
Flow(‘image’,map(lambda	x:	‘image-%04d’,’add	${SOURCES[1:1000]}‘)	
End() 	 	 	#	.	.	AddiKonal	Madagascar	framework	commands	
	

SConstruct Example – Parallel Looping 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

from	rsf.cluster	import	*			#	.	.	Import	Madagascar	project	rules	for	your	cluster	
Cluster(name=’my_queue’,0me=60,ppn=24)	

sline	=	range(0,1000,1)	 	#	.	.	Set	up	integer	array	
	
	

#	.	.	Loop	over	array	of	1000	objects	with	50	jobs	on	each	of	20	nodes	
Fork(0me=10,ipn=50,nodes=20)	
for	iss	in	sline:	
						stag	=	’04%d’	%iss		
						Flow(‘image’+stag,’data’+stag,’my_migra0on_code	par1=…	‘)	
						Iterate()	
Join()	
	

#	.	.	Add	together	object	
Flow(‘image’,map(lambda	x:	‘image-%04d’,’add	${SOURCES[1:1000]}‘)	
End() 	 	 	#	.	.	AddiKonal	Madagascar	framework	commands	
	

SE
R

IA
L 

PA
R

A
LL

EL
 

SE
R

IA
L 

SConstruct Example – Parallel Looping 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

Parallel Execution 

•  mycscons script scans SConstruct file to 
find serial (S) and parallel (P) sections 

•  Generates submission scripts for each 
serial and parallel regions 
–  Scheduler dependent 

•  Submits with wait dependencies (-W)  
–  Each section starts upon successful 

completion of previous sections 

Parallel 1 

Parallel 2 

Serial 3 

Serial 1 

Serial 2 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

Madagascar and Cluster Parallelism 

Design goal Reason / Example M8R 
Scorecard 

Allows multicore  
CPU, GPU, … 

Access cluster parallelism ✔ 
Allow parallelism at 

scripting level 
High degree of data parallelism ✔ 

Straightforward 
adaptation for different 

cluster schedulers 

 
 OpenPBS / PBS Pro / SLURM ✔ 

 
Scalable Process 100s of scripted jobs 

concurrently ✔ 
Automated Scripting  Optimal use of researcher’s time ✔ 

Failure Handling Restart at failure point (scons) --- 
Fault Tolerance Diagnose failure and adaptively restart ✖ 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

•  Madagascar: A Quick Refresher 

•  Madagascar for Cluster-scale Research 

•  Madagascar in the Cloud  

Outline 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

Motivation: 3D Full-wavefield Modelling 

•  Multi-year project developing large-scale model 
of a region of Australia’s Northwest Shelf 

•  Simulate 3D synthetic seismic survey data  
–  Requirements: 108-9 core hours 
–  Challenging public computing request 

•  Investigate use of “burst” cloud computing at 
dynamic pricing 

•  How can we extend M8R framework to operate 
on commercial cloud resources with highly 
variable resource allocations? 
 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

•  Object-oriented actor model with IPython parallel framework 
–  Easy-to-deploy under multiple cluster managers/platforms 
–  Platform agnostic 

•  Distributed / streaming I/O (scalability) 
–  Data servers with HDF5 container back end 
–  Include HDF5 to RSF option 

•  Message passing (improving fault tolerance) 
–  ZeroMQ for fault-tolerant, fast and robust networking 

•  Data representation (speed) 
–  Python Numpy arrays with fast compile-to-C Cython solvers 

Key Design Choices: Toward Fault-tolerance 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

Accelerator 

Design Topology 

Coordinator Data server 
2 (of M) 

Data server 
1 (of M) 

Accelerator 
Cython 

Worker 1 
(of N) 

Cython 
Worker 2 

(of N) 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

Strong Scaling Tests 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

M8R scons Extensions – mycloud.py (in progress)  

Object Description 
Flow() Processing flow command linking input/output files, parameters 

and programs 
Plot() Generate an intermediate plot files 

Result() Generate a final plot file (i.e. for LaTeX manuscript) 
Fetch() Retrieve data file from remote server (ssh) 
Throw() Send data to remote server (ssh) 
Cloud() Pass information on cloud resource request: 

disk image, node configuration, queue name, walltime, … 
Fork() Demarcate parallel section; indicate # of nodes,  

tasks / node, walltime (parallel) 
Iterate() Indicate limit of parallel region 
Join() End of Fork() section 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

•  Python scripting easily extends M8R to cluster-scale computing 
–  Straightforward mark up with little user overhead 

•  Goal: Extend M8R framework to easily operate on commercial cloud 
resources with highly variable resource allocations 
 

•  Work in extending M8R in the cloud is ongoing: 
–  Platform-independent distributed processing framework using next-

generation message passing (ZeroMQ) and HDF5. 
–  Tests using research cloud computing environment show promise 
–  Goal: to develop M8R scons wrappers for cloud environments 

Concluding Remarks 



Shragge and Potter, 2016 Jeffrey.shragge@uwa.edu.au 

Leveraging Madagascar for 
Reproducible Large-scale Cluster 

and Cloud Computing 

Jeffrey Shragge and Toby Potter 
The University of Western Australia   


