Learning Madagascar:

on a per need basis

Tariq Alkhalifah

Seismic Analysis Group (SWAG)
KAUST
swag.kaust.edu.sa

From the net

Q: What is the difference between a Ph.D. in mathematics and a large pizza? A: A large pizza can feed a family of four...

A mathematician, an engineer, and a computer scientist are vacationing together. They are riding in a car, enjoying the countryside, when suddenly the engine stops working. The mathematician: "We came past a gas station a few minutes ago. Someone should go back and ask for help." The engineer: "I should have a look at the engine. Perhaps, I can fix it." The computer scientist: "Why don't we just open the doors, slam them shut, and see if everything works again?"

The issue

The seemingly complex makeup:

- ▶ LaTeX, python (scons????), and C.
- The file system (where is everything?).
- incomplete and not-up-to-date documentation.
- Any info on the libraries? (C and Python)?

The objective

- Getting from Madagascar what you need: even if we have to get dirty.
- Example paper: Scanning for the anisotropy parameter η , soon to be published

Paper: the issue

Uncertainty in anisotropic medium parameters in complex media: The trade-off between anisotropy and inhomogeneity

Paper: scope

- Perturbation of the eikonal equation for small η
- Fast marching approach to solve the equations
- A homogeneous approximation
- A Marmousi example

Scanning for η

First step: the paper template

- ▶ From the book directory, or one of your own papers
- ▶ Read the paper and see if you could form a good introduction from that paper.
- Copy it to your directory compile it (the whole directory)
- ► Remove unwanted examples and corresponding directories (compile again).
- Write your abstract (a road map).

For the η scan paper

"A variational formulation of the fast marching eikonal solver"
Sergey Fomel
book/sep/fmeiko

The coefficients of powers of η

$$v_{v}^{2} \frac{\partial \tau_{0}}{\partial z} \frac{\partial \tau_{i}}{\partial z} + v^{2} \frac{\partial \tau_{0}}{\partial y} \frac{\partial \tau_{i}}{\partial y} + v^{2} \frac{\partial \tau_{0}}{\partial z} \frac{\partial \tau_{i}}{\partial z} = f_{i}(x, y, z)$$
with $i = 1, 2, 3$.

 $\tau(x, y, z) \approx \tau_0(x, y, z) + \tau_1(x, y, z)\eta + \tau_2(x, y, z)\eta^2 + \tau_3(x, y, z)\eta^3$

Second step: An equivalent code

- Covers the dimensions of the input and output fields (also velocity if needed)
- ▶ Locate whether their is an example that runs it (search SConstruct)
- ▶ Copy the code (and all related files) to your directly and compile it
- ► fetch the example directory that runs it to your papers directory and run the example
- Delete unwanted parts and then compile it again (The art of deletion).

Thus I used "Meikonal.c"

Modifications 1 Meikonal.c

```
/* Fast marching eikonal solver (3-D). */
```

Copyright (C) 2004 University of Texas at Austin

/* Eta differntial eikonal solver (3-D). */

This program is free software; you can redistribu it under the terms of the GNU General Public Lice

```
MeikEta.c
```

Copyright (C) 2009 KAUST

This program is free software; you can redistribu it under the terms of the GNU General Public Lice

Modifications 2 Meikonal.c

```
#include <math.h>
```

```
#include "fastmarch.h"
```

MeikEta.c

```
#include <math.h>
```

```
#include "fastEta.h"
```

#include < rsf.h>

#include < rsf.h>

Modifications 3

Meikonal.c

int b1, b2, b3, n1, n2, n3, i, nshot, ndim, is,
float br1, br2, br3, o1, o2, o3, d1, d2, d3, slo
float **s, *t, *v;
char *sfile;
bool isvel, sweep, plane[3];
sf_file vel, time, shots;

MeikEta.c

```
int b1, b2, b3, n1, n2, n3, i, nshot, ndim, is, or
float br1, br2, br3, o1, o2, o3, d1, d2, d3, slo
float **s, *t, *bt;
char *sfile;
bool isbtime, plane[3];
```

sf_file btime, time, shots;

Modifications 4

Meikonal.c

```
if (! sf_getint(" order",&order)) order=2;
/* [1,2] Accuracy order */
```

MeikEta.c

```
if (! sf_getint(" order",&order)) order=2;
/* [1,2] Accuracy order */

if (! sf_getint(" sorder",&sorder)) sorder=2;
/* [1,2,3] Accuracy order of the source perturb

if (! sf_getfloat(" eta",&eta)) eta=0.0;
/* The value of the constant eta */
```

The heart

MeikEta.c

```
for ( is = 0; is < nshot; is++) {
    fastEta(t,bt,p, plane,
               n3.n2.n1.
               03.02.01.
               d3, d2, d1,
               s[is][2], s[is][1], s[is][0],
               b3.b2.b1.
               order, sorder, eta);
    sf_floatwrite (t,n123,time);
```

Modifications subroutine fastmarch.c

```
#include <rsf.h>
/*^*/
```

#include <rsf.h>

/*^*/

#include "fastmarch.h"

fastEta.c

```
#include "fastEta.h"
#include "neighbors.h"
#include "pqueue.h"
```

Modifications subroutine fastmarch.c

```
#include <rsf.h>
/*^*/
```

#include <rsf.h>

/*^*/

#include "fastmarch.h"

fastEta.c

```
#include "fastEta.h"
#include "neighbors.h"
#include "pqueue.h"
```

Choices

fastmarch.c

```
sf_pqueue_start();
sf_neighbors_init (in, d, n, order, time);
```

fastEta.c

```
void updateds (int p1, int p2, int p3, float* tj, f float s, float dy)
```

Complex examples

- ▶ Go to the Data directory under book
- ► Pick the example you need 2-D versus 3-D and the message you want to deliver
- copy that directory to your papers directoy
- ▶ In my case, the Marmousi example
- Alternatively, you could find the examples in some of the reproducible papers

Marmousi Result

A scan for η

 $\eta = 0.0 - 0.5$

Documentation

Madagascar Programming Reference Manual courtesy of SWAG

RSFSRC/book/rsf/manual

Content

- Covers all available data types and subroutines under rsf.h
- ▶ Includes a description (beyond what was given by the developer)
- ▶ It organizes them in terms of usage and purpose
- we plan to have the manual get built automatically to include updates in the subroutine

Content

- ► An example: Finite-Difference modeling
- Data types
- Preparing for input
- Operations with RSF files
- Error handling
- Linear operators
- ► Data analysis
- Filtering
- Solvers
- Interpolation
- Smoothing
- Ray tracing
- ▶ General tools
- General toolGeometry
- Miscellaneous
- ► System

Pointers

- Be patient, do not give up
- Use rsf-user@lists.sourceforge.net
- SConstruct controls everything, try, at least, to understand it
- You could always run RSF like SU

Final remarks

- Make things simple
- Get to know Madagascar
- Always compile (makes error search easier)
- Reproducible is good (very good)
- **Love thy neighbor** → **contribute**

I thank the supporters of SWAG

http://swag.kaust.edu.sa

Madagascar Challenges

- A document for developers to encourage best practices
- ► This includes min. documentation and examples for system codes
- **▶** A steering committee???
- Accept sponsorship? to cover some improvement costs?

The Madagascar philosophy

- Democracy? Do we have really have that?
- Capitalist? It is free!!
- Socialist? Equal distribution regardless of work
- Helpful?