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ABSTRACT

It is difficult to separate additive random noise from spatially coherent signal
using a rank-reduction method that is based on the truncated singular value
decomposition (TSVD) operation. This problem is due to the mixture of the
signal and the noise subspaces after the TSVD operation. This drawback can
be partially conquered using a damped rank reduction method, where the singu-
lar values corresponding to effective signals are adjusted via a carefully designed
damping operator. The damping operator works most powerfully in the case of a
small rank and a small damping factor. However, for complicated seismic data,
e.g., multi-channel reflection seismic data containing highly curved events, the
rank should be large enough to preserve the details in the data, which makes
the damped rank reduction method less effective. In this paper, we develop an
optimal damping strategy for adjusting the singular values when a large rank pa-
rameter is selected so that the estimated signal can best approximate the exact
signal. We first weight the singular values using optimally calculated weights.
The weights are theoretically derived by solving an optimization problem that
minimizes the Frobenius-norm difference between the approximated signal com-
ponents and the exact signal components. The damping operator is then derived
based on the initial weighting operator to further reduce the residual noise after
the optimal weighting. The resulted optimally damped rank reduction method
is nearly an adaptive method, i.e., insensitive to the rank parameter. We demon-
strate the performance of the proposed method on a group of synthetic and real
five-dimensional seismic data.

INTRODUCTION

With the increasing demand for exploration accuracy, wide azimuth seismic (WAZ)
exploration technology has received more and more attention and development. The
seismic data obtained by WAZ acquisition contains rich wavefield information with
high illumination (Chen et al., 2014; Gan et al., 2016; Zu et al., 2017; Kim et al., 2017;
Lu and Feng, 2017; Tian et al., 2017; Chen et al., 2017a; Bucha, 2017; Qu et al., 2016;
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Chen and Song, 2018; Zhang et al., 2018, 2019; Wang et al., 2018). However, due
to the influence of surface environments, the shot, receiver, azimuth and offset of
the original data tend to be unevenly distributed, which is adverse to the subsequent
processing and interpretation such as migration, pre-stack attribute analysis, reservoir
prediction and fluid identification. Seismic data interpolation is such a processing step
to regularize the irregularly sampled seismic traces onto regular grids (Fomel, 2003;
Chen et al., 2016¢; Zu et al., 2016b; Zhou and Li, 2018; Zhang et al., 2016b; Xiang
et al., 2016; Chen et al., 2016a; Zhang et al., 2016¢,a). In the past decades, a number
of methods have been developed to reconstruct the missing seismic traces on regular
grids. One widely used seismic reconstruction strategy is to transform the noisy
seismic data into different domains in order to concisely represent the signal with a
few number of selected components that capture the useful information and recover
the missing components. These include the methods based on the Fourier transform
(Zhou, 2017; Bai and Wu, 2018), Radon transform (Beylkin, 1987), seislet transform
(Gan et al., 2015¢,a,b; Liu et al., 2016b; Xue et al., 2017; Zhou et al., 2018a; Zhou
and Han, 2018b; Chen and Fomel, 2018; Bai and Wu, 2019), curvelet transform (Ma
and Dimet, 2009; Candes et al., 2006; Zu et al., 2015, 2016a), dreamlet transform
(Wang et al., 2015), wavelet transform (Rioul and Vetterli, 1991; Gilles, 2013; Xie
et al., 2015; Liu et al., 2016a; Mousavi and Langston, 2016), dictionary-learning based
adaptive transform (Chen et al., 2016b; Anvari et al., 2017; Siahsar et al., 2017a,b;
Wu and Bai, 2018b,d; Zu et al., 2018, 2019). Another type of methods utilize the
predictable property of seismic data. In the prediction-based approaches, a prediction
error filter is designed such that the predicted data and the existing data have the
minimum misfit by solving a least-squares linear inverse problem (Spitz, 1991; Fomel,
2002; Chen et al., 2016¢). Considering the aliasing issue in reconstructing regularly
sampled seismic data, a prediction error filter is first estimated from the aliasing-free
low-frequency components and then applied to aliased high-frequency components
(Naghizadeh and Sacchi, 2007). The wave equation based methods can also be used
to reconstruct highly incomplete seismic data. These methods connect the seismic
record and the subsurface elastic properties via the elastic wave equation. However,
these methods depend on a prior information about the subsurface elastic properties
and are strictly not data-driven methods. In addition, these methods suffer from
losing computational efficiency when applied in the interpolation methods (Ronen,
1987; Canning and Gardner, 1996; Fomel, 2003). A review of the latest methods on
reconstructing low-dimensional seismic data is given in Chen et al. (2019).

However, the amplitude and phase variations of the WAZ seismic data are of-
ten not accurately recovered by conventional three-dimensional data reconstruction.
More accurate reconstruction results can be obtained by simultaneously interpolating
in five dimensions of inline, crossline, time, azimuth and offset because sampling along
any particular subset of all dimensions is often less than ideal. The pre-stack seis-
mic gathers processed by the five-dimensional (5D) interpolation have higher quality,
which can not only improve the imaging accuracy, but also improve the capabilities of
fracture prediction and fluid identification. Therefore, a large number of 5D seismic
data reconstruction methods and techniques have emerged in the past decade.
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The minimum weighted norm interpolation (MWNI) is a constrained inversion
algorithm that was successfully applied to 5D seismic data interpolation (Liu and
Sacchi, 2004; Trad, 2007, 2009). Trad (2007) employed this algorithm to regularize
the data in the inline-crossline-azimuth-offset frequency domain and obtained pre-
stack interpolated results for the migration input. This work proved that the results
after 5D interpolation help to improve the fidelity of the migration, which laid the
foundation for the subsequent promotion of five-dimensional seismic data reconstruc-
tion. Downton et al. (2008) confirmed the validity of the MWNI for 5D interpolation
and found that the 5D interpolation can preserve the amplitude and improve the
signal-to-noise ratio. The MWNI did successfully interpolate sparse data and re-
duced migration artifacts (Trad, 2009), but it had difficulty to deal regularly missing
data with spatial aliasing. Chiu (2012) proposed an anti-aliasing MWNI method to
improve the deficiency of conventional MWNI in processing aliased data. In addi-
tion, some other multidimensional interpolation algorithms are also available for the
five dimensions (Chopra and Marfurt, 2013). Jin (2010) proposed a 5D interpolation
method based on a damped least-norm Fourier inversion (DLNFT). Benefiting from
the use of nonuniform discrete Fourier transform, DLNFI breaks the limitation in
MWNI that the input data must be binned into the regular grid.

Another alternative 5D interpolation method utilizes wavefront attributes such
as wavefront curvatures and propagation angles. Xie and Gajewski (2017) proposed
a wavefront-attribute-based 5D interpolation (5D WABI) via a global optimization
strategy instead of pragmatic search approach, which can take advantage of the wide,
rich, or full azimuth acquisitions. Application on a synthetic seismic data have shown
that the 5D WABI method is better at preserving diffractions than the damped rank-
reduction method but at the expense of significantly lower computational efficiency.
In recent years, dictionary learning and machine learning are applied to the recon-
struction of 5D simple data (Yu et al., 2015; Jia and Ma, 2017; Jia et al., 2018).
Data driven tight frame (DDTF) is a kind of dictionary-learning method, which can
simultaneously denoise and interpolate 5D seismic data (Yu et al., 2015). In DDTF,
a sparsity-promoting algorithm is used to build the dictionary which can represent
the observed data and estimate the complete data. Jia and Ma (2017) combined
the DDTF with a classic machine learning method named support vector regression
(SVR) to optimize the learning, which obtained better performance than the Gauss
SVR method. With the continuous improvement of intelligent methods, learning-
based 5D data reconstruction will be a hot research topic in the future.

Rank-reduction based algorithms have great potentials for 5D seismic data inter-
polation. The basic assumption of these methods is that the fully sampled noise-free
seismic data can be characterized as a low-rank matrix or tensor and the rank of the
matrix or tensor increases when there are missing traces or noise in the data (Zhou
et al., 2018b). The missing traces denote the zero-value seismic traces when the seis-
mic data is binned from irregular station positions to regular grids. By solving a
low-rank tensor completion problem via convex optimization, the missing traces can
be accurately recovered with the information of all dimensions (Kreimer et al., 2013).
In addition, this method has stronger denoising ability than the previous methods.
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From other perspectives of rank minimization, Ely et al. (2015) estimated the com-
plete data tensor via tensor singular value decomposition (SVD) and parallel matrix
factorization, respectively. Subsequently, Gao et al. (2017) further developed a new
and fast low-rank tensor completion method based on parallel square matrix factor-
ization and advocated that reshaping the complete data tensor into almost square or
square matrices can improve the reconstruction quality. However, when the signal-
to-noise ratio of the observed seismic data is very low, the Cadzow rank-reduction
method via truncated singular value decomposition (TSVD) does not achieve rea-
sonable reconstruction result, i.e., the result may still contains a large amount of
residual noise. Chen et al. (2016¢) proposed a damped rank-reduction method to
further suppress the residual noise by introducing a damping operator to the block
Hankel matrix after TSVD. In the 5D reconstruction of field seismic data, the damped
rank-reduction method achieved better performance than the Cadzow rank-reduction
method (Trickett and Burroughs, 2009; Oropeza and Sacchi, 2011). Throughout
the paper, the Cadzow rank-reduction method is referred to as the traditional rank-
reduction method.

The basic assumption of the rank-reduction methods is that the Hankel matrix
formulated from the useful seismic signal is of low rank and its rank is equal to the
number of linear/planar events (or dipping components) in the seismic data (Oropeza
and Sacchi, 2011; Huang et al., 2016; Siahsar et al., 2017¢; Chen et al., 2017b; Zhou
and Han, 2018a; Wu and Bai, 2018c,e,a; Bai et al., 2018a,b, 2019; Wu and Bai, 2019).
However, in general the real seismic data is composed of nonlinear events, which are
more complicated than the linear events. A common strategy for addressing this issue
is to implement the algorithm in local patches since the events can be approximately
viewed as linear in small patches (Zhang et al., 2017). However, this strategy poses
another difficulty of choosing an appropriate rank for each local processing window.
A practical implementation of the rank-reduction method may require the predefined
rank to be relatively large in order to avoid the damage of useful signal due to inap-
propriate assumption of the structural complexity. This conservative selection of rank
would make the resulted data contain a significant amount of residual noise. In this
paper, we develop a relatively adaptive rank-reduction method, by which we can sup-
press the strong residual noise even when using a large rank. We first calculate a set
of optimal weighting coefficients to weight the singular values as a first step by solv-
ing an optimization problem that minimizes the Frobenius-norm difference between
the approximated signal components and the exact signal components. The rank-
reduction method based on the optimal weighting strategy can be further improved
when connected with the damped rank-reduction method. The resulted method is
named as the optimally damped rank-reduction method, and can potentially provide
the best solution to the rank-reduction based high-dimensional seismic reconstruction
problem in an adaptive way. We will use comprehensive numerical tests and detailed
analysis to demonstrate the superiority of the presented algorithm based on several
synthetic examples and a real seismic data.
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THEORY
Construction of the block Hankel matrix for 5-D seismic data

Let D(t, hx, hy, x,y) denote the 5-D seismic data in the time domain, and D(f, hz, hy, =, y)
be the data in the frequency domain. For notation convenience, we omit f in the
following context and use Dy ko rska to denote D(f, hx, hy,x,y). The traditional
rank-reduction based methods require the construction of a level-four block Hankel
matrix for 5-D seismic data to meet the low-rank assumption. A level-four block
Hankel matrix means that we treat a series of level-three block Hankel matrix as
elements and arrange them into a Hankel matrix. In a similar way, a level-three block
Hankel matrix is constructed from a series of level-two block Hankel matrices while

a level-two block Hankel matrix is formed from several standard Hankel matrices.

The level-four block Hankel matrix has the following explicit expression:
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In order to make all target matrices (from equation 1 to 4) close to square matrices,
parameters Y; are defined as [%J +1,7=1,2,3,4, where X; denotes the size of the
ith dimension. Here, |-| denotes the integer part of an input argument.
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The process of transforming a four-dimensional hypercube Dy x2 k3 14 to the block
Hankel matrix H® is referred to as the Hankelization process. We can briefly denote
this process as:

HY = HDyy ko k3 pa- (5)

Another important step in the rank-reduction based method is the rank reduction
process, which can be denoted as F.

Reconstructing the missing data aims at solving the following equation:
SoM = M,, (6)

where S is a sampling matrix, M = H®, and M, denotes the block Hankel matrix
with missing entries. o denotes element-wise product.

Equation 6 is seriously ill-posed and the low-rank assumption is applied to con-
strain the model,

min || SoM — My ||,
M

s.t. rank(M) = N. (7)

| - || denotes the Frobenius norm of an input matrix. The constraint in equation 7
means that we constrain the rank of the block Hankel matrix to be N.

The problem expressed in equation 7 can be solved via the following iterative
solver:

M, = a,My+ (1 — a,S) o FM,,_1, (8)

a, is an iteration-dependent scalar that linearly decreases from a; =1 to ay,,,, = 0.
a, is used to alleviate the influence of random noise existing in the observed data.

Optimal weighting for rank reduction

The observed data M can be expressed as:
M=S+N, (9)

where S and IN denote the signal and noise components. It is worth noting that for
the derivation convenience, we assume the noise component N to be white. Although
not exactly correct for seismic data, the denoising model also works for seismic data

with band-limited noise. In the following analysis, we assume M and N have full
rank and S has deficient rank. M, S and N are all of size I x J.

The singular value decomposition (SVD) of S can be represented as:

o ¥ S][RE]
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Because of the deficient rank, the matrix S can be written as:

S = UV (V)" (11)

The singular value decomposition (SVD) of M can be represented as:
M= [Uy Uy { ! } { ! : 12
CHR A vl e (12)
The rank-reduction method by TSVD refers to
M = Uys (Vi)™ (13)
Here, M is the estimated signal component via TSVD. We assume the rank of M is
N, and thus the size of UM is I x N. £ is of size N x N. VM is of size J x N.

However, the M is still a mixture of the signal and noise subspaces. Combining
equations 9, 10, and 11, it is easy to derive that (Chen et al., 2016¢)

M = S + UJ (U N, (14)

where we can see that the estimated signal component via TSVD is still corrupted
by the noise component, which is the projection of the noise component to the signal
component.

This problem can be partially alleviated by a singular value thresholding step:
M= UYs (Vi (15)
where 5311‘/[ is the thresholded singular values such that:
5 =T(EM 7). (16)

where T denotes a singular value thresholding operator and 7 denotes the threshold.
However, defining an optimal threshold is inconvenient and sometimes even difficult.
It is because the noise component contributes differently to each singular value and a
constant threshold is not plausible to deal with the inhomogeneous noise distribution.

Thus, in this paper, we propose an adaptive weighting algorithm to optimally
define the singular values in order to best reconstruct the signal component. We
introduce a weighting operator W to adjust the 3 after applying SVD to the
observed noisy signal. To calculate the optimal weighting operator is equivalent to
solving the following optimization problem:

W = argmin || UFS? (V) — UYWEY (VIHT |- (17)
By an optimally weighted combination of estimated left and right singular vectors, the

optimization problem 17 can yield the optimally adjusted singular values to obtain
the closest low-rank estimates of signal component.
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The optimal solution for the optimization problem was given in Benaych-Georges
and Nadakuditi (2012) and Nadakuditi (2013):

W = diag(iy, s, - - - , W), (18)

oM denotes the ith diagonal entry of 3 (£ € RV*N). D denotes the D-transform:

where

D(0; %) = %Tr (o(c’I—E=")1) %Tr (o(c’T—2"%)H)
Sy I-x2)7! 2 | o
= {N T (0(0 - ¥°) )}

where D’ is the derivative of D with respect to o, and Tr(+) is the trace of the input:

Die:3) =2 {%Tr ClCat 22>1)] {%Tl“ ((0’T—%*) " = 20(c’1 — ¥*)%0)
=2 (oo )] [T (T~ 37— 20207 5]
(21)

Using the optimally estimated weighting operator expressed in equation 18, we can
expressed the optimally estimated signal component as:

M = UMWEM(vM)H (22)

The optimal weighting strategy of the singular values is a substitute to directly
truncating the singular values as used in the traditional rank-reduction method. An
early investigation of the strategy to improve the rank-reduction performance in seis-
mic data denoising and reconstruction is presented in Aharchaou et al. (2017). Be-
sides, there are also a number of alternatives to these two approaches (weighting and
truncating) such as automatic rank determination (Gavish and Donoho, 2014; Trick-
ett, 2015) and randomized approaches such as the randomized SVD and randomized
QR factorizations (Cheng and Sacchi, 2014).

Optimally damped rank-reduction method

In this section, we will derive a damping operator for the optimally estimated signal
components to further reduce the residual noise after rank reduction. Let

oo (3 SN
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to be an SVD of matrix Q, and let

U? = Uy, (24)
»9¢ = wxM, (25)
V¢ =vM (26)

then equation 22 can be understood as a TSVD of the matrix Q:
Q = U?x9ove". (27)

Analogous to equation 14, equation 22 can be re-formulated as

Q=M=5+USUS"N, (28)

When the rank is sufficiently large, we assume the estimated signal contains all
signal components of the originally observed noisy data and contains less noise than
the observed data. To further suppress the residual noise in the estimated signal, we
re-analyze M in detail. We can express the newly estimated signal as:

~ A~ H ~

Q=M=S+UU;"N, (29)
where UyUY "N denotes the residual noise component after the step using equation
22.

Following Chen et al. (2016¢) and Huang et al. (2016), S can be approximated as:

H
S = U9s9T (V?) , (30)
T=1-T, (31)

where I is a unit matrix and here we name T the damping operator. The damping
relation I' is expressed as:

. -N
NP (2?) , (32)
where ¢ denotes the maximum element of ¢ and N denotes the damping factor.
Considering that U¥ = UM, 5% = WX and V¥ = V¥, equation 30 can be
expressed as:
< H
S =UyTWR (V)" (33)

which is referred to as the optimally damped rank reduction method. The F can
thus be chosen as the operation defined in equation 33, and through iterations we can
reconstruct and denoise the 5D frequency-domain seismic data.

There are two main advantages of the optimally damped rank reduction method.
First, compared with the traditional and damped rank-reduction methods, the opti-
mally damped rank reduction method is insensitive to the rank parameter, making it
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nearly an adaptive method for rank reduction based seismic denoising and reconstruc-
tion. This advantage is important because one of the most troublesome problems in
processing complicated seismic data is the selection of the rank. A large rank tends
to result in significant residual noise while a small rank tends to damage useful sig-
nals. This parameterization problem becomes more seriously when the rank reduction
method is applied locally in windows. Because of the insensitivity to rank of the pro-
posed method, one can choose a relatively large rank for all complicated datasets or
local patches. Secondly, compared with the optimal weighting based rank reduction
method, the proposed method can further suppress the noise components that reside
mostly in the smaller singular values. The damping operator is data-driven and can
adaptively separate signal and noise in the singular value spectrum further after the
optimal weighting.

In the rank-reduction methods, construction of the level-four Hankel matrix is very
computationally expensive. Recent advances in the rank reduction based methods
show that the construction of the block Hankel matrix is not required. These methods
exploit the structure of such matrices to avoid explicitly forming these matrices prior
to factorization (Lu et al., 2015; Cheng and Sacchi, 2016). When factorizing data
using only 1 or 2 spatial dimensions these approaches are not necessary, but moving
to 3 or 4 spatial dimensions is not computationally feasible without considering matrix
free approaches. In the current stage, we cannot move from the SVD-based method to
SVD-free method because the damping operation has not been derived for the SVD-
free case. Although it takes a large computational cost and is not very practically
for the time being, it is still a promising algorithm. We will keep on investigating
the acceleration of the current algorithm and make it computationally feasible in the
future.

EXAMPLES

We first apply the proposed optimal rank-reduction method to a 5D synthetic data
with linear/planar events, as shown in Figure 1. Figure 1(a) shows the clean synthetic
data in a common offset gather. The 3D common offset gather (¢t — z — y) has been
arranged into a 2D matrix. Figure 1(b) shows the noisy data with extremely strong
band-limited random noise. The useful signals are almost buried in the strong noise.
Figure 1(c) shows the incomplete data, where 75% traces have been randomly deci-
mated. The reconstructed and denoised data using three different methods, i.e., the
traditional rank-reduction method (RR), the damped rank-reduction method (DRR),
and the optimally damped rank-reduction method (ORR), are shown in Figure 2. All
three methods successfully recovered most of the signals. It is clear that the RR
method causes significant residual noise, the result from the DRR method is much
cleaner than that from the RR method but still contains some residual noise. The
proposed ORR method, however, obtains the cleanest result among the three results
shown in Figure 2. To evaluate the quality of the three reconstructed data, given
the exact solution in Figure 1(a), we calculate the local similarity map between each
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reconstructed data and the exact solution. The local similarity is a way to evaluate
the similarity between two vectors/matrices/cubes in a local manner so that the eval-
uation can be revealed immediately from the calculated local similarity maps. The
detailed introduction of mathematics behind the local similarity calculation can be
found in Chen and Fomel (2015). From the local similarity comparison, it is quite
obvious that from the top panel (RR method) to the bottom panel (ORR method),
the similarity becomes higher and higher, which indicates that the proposed method
obtains the most accurate solution.

To examine the amplitude recovery quality, we select the 22nd traces from the
clean data in Figure 1(a) and from the three reconstructed data in Figure 2, and
draw them in Figure 4. Figure 4(a) shows the trace-by-trace comparison in the range
of the whole trace and Figure 4(b) shows the zoomed trade-by-trace comparison. The
zooming part is highlighted by the red transparent rectangle shown in Figure 4(a).
From Figure 4 we can see that both RR and DRR methods (blue and red lines) cause
strong fluctuations in the front part of the trace, while the proposed method obtains
a result (the green line) that is the closest to the exact solution (the black line). The
observation is even clearer in the zoomed comparison shown in Figure 4(b). Figure 5
shows the comparison of reconstruction error. The reconstruction error is calculated
as the difference between the exact solution (Figure 1(a)) and each reconstructed
data shown in Figure 2. From Figure 5 we can observe that both RR and DRR cause
significant error and the proposed ORR method causes negligible reconstruction error
except for some observable signal energy. The reconstruction error of RR method is
higher than the DRR method, mostly because of the stronger residual noise caused
by the RR method. Since the reconstruction error for the proposed method is mostly
negligible, the error caused by the leakage signal energy becomes more apparent. To
compare the leakage signal energy among three methods, we calculate the extra noise
section of the RR and DRR methods. The extra noise section refers to the extra
noise compared with the reference noise section from the ORR method (Figure 5(c)),
thus is calculated as the difference between the error from either RR or DRR method
and the error from the ORR method. The extra noise sections corresponding to
the RR and DRR methods are shown in Figure 6. It is obvious that by calculating
the extra error sections, the leakage useful energy from RR/DRR method and ORR
method counteract each other and the resulting sections are mostly random noise.
This observation indicates that the energy of the leakage signal for the three methods
are nearly the same. We conclude from this test that despite the same damage to
useful signals, the proposed method causes the least residual noise and thus obtains
the cleanest reconstruction result.

We also compare the level-four block Hankel matrices of different methods. Figures
7a and 7b shows the Hankel matrices for the clean and incomplete data for the
frequency slice of 30Hz. Figures 7c and 7d show the zoomed Hankel matrices for the
clean and incomplete data. The zooming areas are highlighted by the red rectangles
shown in Figures 7a and 7b. Because of the missing traces, the Hankel matrix contains
a number of blank areas. Figure 8 shows the Hankel matrices for different methods.
The left column correspond to the Hankel matrices after 1 iteration. The right column
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correspond to the Hankel matrices after 10 iterations. We only conclude from Figure
8 that after 10 iterations all three methods obtain similar Hankel matrices as the
exact solution shown in Figure 7a but we cannot see the difference between different
methods clearly. The differences between different methods can be clearly observed
from the zoomed Hankel matrices, as shown in Figure 9. It is clear that from the
top to bottom in Figure 9, the Hankel matrix becomes smoother and smoother and
is closer to the exact solution shown in Figure 7c.

In addition to the local similarity mentioned above, we also use the signal-to-noise
ratio (SNR) defined as follows to quantitatively measure the performance (Huang
et al., 2016; Chen, 2017; Huang et al., 2017):

Is3
SNR = 10log,, T (34)
where s denotes the vectorized clean data and S denotes the vectorized reconstructed
data. In this example, the SNRs of the observed data, the reconstructed results via
the RR method, the DRR method, and ORR method are -4.59 dB, 5.51 dB, 9.54
dB, and 11.83 dB, respectively. In this test, we use rank = 10, assuming that we do
not have a prior information about the structural complexity of the data and thus
needing to set a relatively high rank. We then test the performance when the rank
is chosen smaller. The reconstructed data when rank = 5 are shown in Figure 10.
Their corresponding error sections are shown in Figure 11. From Figures 10 and 11,
we can reach almost the same conclusion as the last test. In this case, the SNRs of
the reconstructed results via the RR method, the DRR method, and ORR method
are 8.01 dB, 10.87 dB, and 11.97 dB, respectively. The detailed SNR comparison is

shown in Table 1, including the case when rank = 3.

To test the sensitivities of each method to input noise level, we vary the variance
of the additive random noise from 0.1 to 0.9 and calculate the output SNRs corre-
sponding to different methods and draw the diagrams in Figure 12. The black line
corresponds to the input SNR curve. The blue, red, and green lines correspond to
the RR, DRR, and ORR methods, respectively. As the noise variance increases, the
input SNR decreases, and so do the output SNRs of the three methods. However, the
proposed method always outperforms the other two methods. It is worth noting that
as the noise variance becomes larger, the differences between the proposed method
and the other methods are also larger, which indicates that the proposed method is
more effective for stronger noise.

To test the effectiveness of each method in situations with different sampling
ratios, we vary the sampling ratio from 10% to 90%, and draw the input and output
SNR curves in Figure 13. The colorful lines have the same meaning in this case. As
we can see from Figure 13, the input SNR decreases with increasing sampling ratio.
The output SNRs increase with increasing sampling ratios. It is clear that the output
SNR curve of the proposed method is always above the other curves. The proposed
method outperforms other two methods more when sampling ratio is higher.

To test the sensitivities of different methods to the input parameter, i.e., the
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predefined rank, we vary the rank from 4 to 15 and draw the SNR curves in Figure
14. Both RR and DRR methods decrease fast as the predefined rank increases while
the SNR curve of the proposed ORR method is almost flat and is also above the other
two curves. This test indicates that while the RR and DRR are more or less sensitive
to the predefined rank, the proposed method is almost parameter-free, which makes
the ORR method convenient to use in realistic situations.

To compare the computational cost of different methods, we measure the com-
puting time for the synthetic example with linear events. The computation is done
on a MacBook Pro laptop equipped with an Intel Core i7 CPU clocked at 2.5 GHz
and 16 GB of RAM. The detailed computing time comparison is shown in Table 2.
It shows that the computational cost of the ORR method is higher than the other
two methods. The RR and DRR methods have almost the same computational cost
while the proposed method costs 2-5 times more than the other two methods.

In order to test the effectiveness of the three methods on data containing curved
events and to compare the performances of different methods in this case, we then use
the second example to show the performance. Figure 15 shows the clean data, noisy
data, and incomplete data with 70% traces randonly missing in a common midpoint
gather. Figure 16 shows the reconstructed data using different methods. Because
this dataset no longer meet the linear-event assumption of the rank-reduction based
methods, we use a relatively higher rank in this example. The top row in Figure
16 shows results when rank = 12. The bottom row in Figure 16 shows results when
rank = 24. It is clear that the three methods also work when there are curving events.
The proposed method obtains obviously cleaner result than the other two methods.
The SNRs of the incomplete data, data from the RR method, DRR method, and
ORR method are 0.59, 14.11, 16.46, and 16.86 dB when rank = 12 and are 0.59,
13.88, 16.01, and 16.83 dB when rank = 24. We also calculate the local similarity
between the exact solution shown in Figure 15a and each reconstructed data and show
the similarity cubes in Figure 17. The local similarity corresponding to the proposed
method is obviously higher than those from the other two methods, indicating a more
accurate reconstruction result using the proposed method.

Finally, we apply the three methods to a 5D field data. We use the data previously
used in Chen et al. (2016¢). The data have been binned onto a regular grid and a
common offset gather of the field data is shown in Figure 18. In Figure 18, the colored
stripes are the recorded seismic traces. The white blanks denote the missing traces,
which means that we do not observe seismic data in these positions. Because of the
difficulty in displaying a 5D dataset, we only show a common midpoint gather here.
The 3D common midpoint gather is rearranged into a 2D matrix for a better view.
The two transparent colored windows denote two zooming areas for an amplified
comparison. In this example, roughly 80% traces are missing from the regular grids.
Because of the high ratio of missing traces, the observed seismic traces do not show
any spatial coherency. It is difficult to see the waveforms from the raw data. The
results from the three aforementioned methods are shown in Figure 19. After 5D
reconstruction, the white blanks in the raw data have been filled with seismic traces.
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The waveforms become well aligned along the spatial direction. Compared with the
raw data, all methods seem to obtain a dramatic improvement on the data quality. It
is salient that both DRR and ORR methods obtain much smoother and cleaner results
while the traditional RR method obtain a result that is noisier. Because of the strong
residual noise in the result from the traditional RR method, the spatial coherency
of the seismic events are deteriorated, which may affect the subsequent processing
tasks like imaging, inversion, and interpretation. =~ When zooming the data in the
two transparent blue and red rectangles in both Figures 18 and 19, the comparison
among different methods becomes much clearer. From Figures 20 and 21, we observe
that although the DRR method obtain a much smoother result compared with the RR
result, as already discussed from Chen et al. (2016¢), the ORR method obtains a even
smoother result, with energy spatially more correlative. We also extract two constant
time slices at t = 0.32s and t = 0.64s, respectively, and show them in Figures 22 and
23. The pixels corresponding to the proposed method are obviously smoother from
the proposed method. The two reconstructed time slices from the proposed method
show obvious shapes of a dome.

Table 1: SNRs comparison in dB for the synthetic example with linear events.

Incomplete | RR | DRR | ORR
-4.59 9.96 | 11.68 | 12.03
-4.59 8.01 | 10.87 | 11.99

N=10 -4.59 5.01 | 9.54 | 11.83

Table 2: Computing time comparison in seconds for the synthetic example with linear
events. The computation is done on a MacBook Pro laptop equipped with an Intel
Core i7 CPU clocked at 2.5 GHz and 16 GB of RAM.

RR DRR | ORR
246.39 | 249.63 | 656.33
249.37 | 252.52 | 923.45
N=10 | 250.28 | 255.27 | 1226.63

Table 3: SNRs comparison in dB for the synthetic example with hyperbolic events.

Incomplete | RR | DRR | ORR
N=12 0.59 14.11 | 16.46 | 16.86
N=24 0.59 13.88 | 16.01 | 16.83
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CONCLUSIONS

We have introduced a new rank-reduction (RR) method for interpolating and denois-
ing five-dimensional seismic data based on a cascaded optimal weighting and damp-
ing operations. The proposed optimally damped rank-reduction (ORR) method can
further improve the damped rank-reduction (DRR) method in causing less residual
noise and making the result smoother. The proposed ORR method works effectively
in various data examples including data with linear/planar events, data with hyper-
bolic events, and field data. While in the case of low SNR, all rank-reduction methods
tend to damage some useful energy, the proposed ORR method does not cause extra
damage but can remove more noise than the other rank-reduction methods. The
waveforms reconstructed from the proposed method are more similar to the ground-
truth solution in the synthetic tests. The block Hankel matrix from the proposed
method in each frequency slice is smoother than other rank-reduction method, which
accounts for why it is more capable of suppressing residual noise. The proposed
method outperforms the other rank-reduction methods more in stronger noise and
higher sampling ratios. The effectiveness is almost unchanged for different predefined
ranks, meaning that the proposed method is almsot parameter-free. One drawback
of the proposed method is that the computational cost is 2-5 times higher than the
other rank-reduction methods, which can be potentially tackled in future research.
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Figure 1: Common offset gather comparison for the synthetic example (reshaped into
a 2-D matrix). (a) Clean data. (b) Noisy data. Note that because of the strong
random noise, the useful signals are almost buried in the noise. (c¢) Incomplete data
with 70% randomly removed traces. The blanks in (c) indicate where there are missing
traces. The strong noise and missing traces make the data quality extremely low.
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Figure 2: Common offset gather comparison for the synthetic example (reshaped into
a 2-D matrix). (a) Reconstructed data using the RR method. (b) Reconstructed data
using the DRR method. (c¢) Reconstructed data using the ORR method. In this case,
rank = 10.
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Figure 3: Local similarity comparison for the synthetic example (reshaped into a 2-D
matrix). (a) Local similarity using the RR method. (b) Local similarity using the
DRR method. (c) Local similarity using the ORR method. It is obvious that the local
similarity of the ORR method is much larger than the other two methods, indicating
a more accurate reconstruction performance.
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Figure 4: Trace-by-trace comparison. (a) Comparison in the whole trace. The black
line denotes the exact solution. Green line denotes the result from the proposed
method. Red line denotes the result from the DRR method. Blue line denotes the
result from the RR method. (b) Zoomed trace from (a). The transparant red window
highlight the zooming area.
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Figure 5: Common offset gather comparison for the synthetic example (reshaped into
a 2-D matrix). (a) Reconstruction error using the RR method. (b) Reconstruction
error using the DRR method. (c) Reconstruction error using the ORR method. In

this case, rank = 10.
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Figure 6: Extra error comparison compared with the ORR method for the synthetic
example (reshaped into a 2-D matrix) when rank = 10. (a) Extra error caused by
RR method (the difference between 5(a) and 5(c)). (b) Extra error caused by RR
method (the difference between 5(b) and 5(c)).
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Figure 7: Hankel matrices for the clean and observed data for frequency slice of 30Hz.
(a) Hankel matrix of the clean data. (b) Hankel matrix of the observed data. (c) &
(d) Zoomed Hankel matrices of (a) & (b). The zooming area is highlighted by the
red rectangles.
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Figure 8: Hankel matrices for different methods for frequency slice of 30Hz. Left
column: Hankel matrix after 1 iteration. Right: Hankel matrix after 10 iterations.
Top row: Hankel matrices for the RR method. Middle row: Hankel matrix for the
DRR method. Bottom row: Hankel matrix for the ORR method.
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Figure 9: Zoomed Hankel matrices for different methods for frequency slice of 30Hz.
Left column: Hankel matrix after 1 iteration. Right: Hankel matrix after 10 itera-
tions. Top row: Hankel matrices for the RR method. Middle row: Hankel matrix for
the DRR method. Bottom row: Hankel matrix for the ORR method.



Chen et al., 2019 30 ORR

Time (s)

Time (a)

Time (a)

fx

Figure 10: Common offset gather comparison for the synthetic example (reshaped
into a 2-D matrix). (a) Reconstructed data using the RR method. (b) Reconstructed
data using the DRR method. (c) Reconstructed data using the ORR method. In this
case, rank = 5.
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Figure 11: Common offset gather comparison for the synthetic example (reshaped into
a 2-D matrix). (a) Reconstruction error using the RR method. (b) Reconstruction
error using the DRR method. (c) Reconstruction error using the ORR method. In
this case, rank = 5.
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Figure 12: SNR diagrams of the different approaches with respect to the noise level

(variance value). Note that the proposed approach outperforms the traditional meth-
ods more and more as the noise level increases.
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Figure 13: SNR diagrams of the different approaches with respect to the sampling
ratio (in percent). It is obvious that the difference between the ORR method and

the DRR method becomes larger as the sampling ratio increases. The ORR method
always outperforms the other methods for all sampling ratios.
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Figure 14: SNR diagrams of the different approaches with respect to the selected
rank. The ORR method is obviously much less sensitive to the rank compared with
other two methods. This phenomenon indicates that the ORR method can be applied
as an adaptive method by setting a relatively large rank.
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Figure 15: Common midpoint gather comparison for the synthetic example with
hyperbolic events. (a) Clean data. (b) Noisy data. (¢) Incomplete data. The blanks
in (c) indicate where there are missing traces.
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Figure 16: Common midpoint gather comparison for the synthetic example with
hyperbolic events. Top row shows results when rank = 12. Bottom row shows
results when rank = 24. Left: Reconstructed data using the RR method. Middle:
Reconstructed data using the DRR method. Right Reconstructed data using the
ORR method. The SNR comparisons are shown in Table 3.



Chen et al., 2019 36 ORR

Figure 17: Local similarity comparison for the synthetic example with hyperbolic
events. Top row shows results when rank = 12. Bottom row shows results when
rank = 24. Left: Reconstructed data using the RR method. Middle: Reconstructed
data using the DRR method. Right Reconstructed data using the ORR method. The
introduction of local similarity is given in Chen and Fomel (2015).
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Figure 18: Real data example with a lot of missing traces. Because of the difficulty in
display a 5D dataset, only one common midpoint gather is extracted and rearranged
into a 2D matrix, and is plotted here. The two transparent colored windows denote
two zooming areas for an amplified comparison.
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Figure 19: Real data example. (a) Reconstructed data using the RR method. (b)
Reconstructed data using the DRR method. (c¢) Reconstructed data using the ORR
method. In this case, rank = 20. It is obvious that all three methods obtain dramatic
improvement from the raw data. The ORR method obtains cleaner and spatially more
coherent seismic events compared with other two methods.
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Figure 20: Zoomed comparison for the field data example (the blue frame box). (a)
Incomplete data. (b) Reconstructed data using the RR method. (c) Reconstructed
data using the DRR method. (d) Reconstructed data using the ORR method.
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Figure 21: Zoomed comparison for the field data example (the red frame box). (a)
Incomplete data. (b) Reconstructed data using the RR method. (c) Reconstructed
data using the DRR method. (d) Reconstructed data using the ORR method.
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Figure 22: Comparison for constant time slice for the field data example (¢ = 0.32s).
(a) Incomplete data. (b) Reconstructed data using the RR method. (c) Reconstructed
data using the DRR method. (d) Reconstructed data using the ORR method.
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Figure 23: Comparison for constant time slice for the field data example (t = 0.64s).
(a) Incomplete data. (b) Reconstructed data using the RR method. (c) Reconstructed
data using the DRR method. (d) Reconstructed data using the ORR method.



