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ABSTRACT

Time migration, as opposed to depth migration, suffers from two well-known
shortcomings: (1) approximate equations are used for computing Green’s func-
tions inside the imaging operator; (2) in case of lateral velocity variations, the
transformation between the image ray coordinates and the Cartesian coordinates
is undefined in places where the image rays cross. We show that the first lim-
itation can be removed entirely by formulating time migration through wave
propagation in image-ray coordinates. The proposed approach constructs a time-
migrated image without relying on any kind of traveltime approximation by for-
mulating an appropriate geometrically accurate acoustic wave equation in the
time-migration domain. The advantage of this approach is that the propaga-
tion velocity in image-ray coordinates does not require expensive model building
and can be approximated by quantities that are estimated in conventional time-
domain processing. Synthetic and field data examples demonstrate the effective-
ness of the proposed approach and show that the proposed imaging workflow
leads to a significant uplift in terms of image quality and can bridge the gap
between time and depth migrations. The image obtained by the proposed algo-
rithm is correctly focused and mapped to depth coordinates it is comparable to
the image obtained by depth migration.

INTRODUCTION

Seismic imaging has the ultimate goal of creating an image of subsurface structures
in depth (Gray et al., 2001; Bednar, 2005; Biondi, 2006; Etgen et al., 2009). However,
it often falls short of this goal in practice because of the requirement of having an
accurate velocity model (Glogovsky et al., 2008, 2009). That is possibly the main
reason why time-domain imaging methods continue to play an important role in
practical seismic data analysis.

Time migration takes a different route from depth migration by reducing the
problem of velocity estimation to a parameter-picking problem. Each image point in
a time-migrated image is associated with its own velocity parameter, which can be
determined either by scanning different velocities (Yilmaz et al., 2001) or by wave ex-
trapolation in the image-velocity space (Fomel, 2003). The computational advantage
of time-domain imaging comes at the expense of two main flaws:
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1. Time migration uses approximate Green’s functions (Zhang and Zhang, 1998)
that typically rely on 1-D velocity models and hyperbolic or slightly non-
hyperbolic traveltime approximations.

2. In the case of lateral velocity variations, the transformation between the image-
ray coordinates and Cartesian coordinates gets distorted in places where the im-
age rays cross. In such areas, there is no longer a one-to-one mapping between
image-ray coordinates and Cartesian coordinates, and the coordinate transfor-
mation will also have a zero determinant (at the caustics of the image-ray field)
(Hubral, 1977).

Image rays are seismic rays orthogonal to the surface of observation. These rays
remain straight in the absence of lateral velocity variations but bend when they meet
lateral heterogeneities. Cameron et al. (2007, 2008b, 2009) extend the image-ray
theory to establish an exact theoretical connection between depth- and time-migration
velocities and an inversion algorithm for converting the latter to the former. In the
absence of lateral velocities variations, the time-to-depth conversion is accomplished
by Dix inversion Dix (1955). As shown by Cameron et al. (2007) and Iversen and
Tygel (2008), an additional correction is required when velocities vary laterally that
is the correction related to the geometrical spreading of image rays. Li and Fomel
(2013, 2015) develop a robust algorithm for time-to-depth conversion including a
geometrical-spreading correction in the presence of lateral variations. Sripanich and
Fomel (2018) develop a fast version of the time-to-depth conversion algorithm in the
case of weak lateral variations.

In this paper, we propose to apply wave-equation imaging to create accurate
seismic images in image-ray coordinates but without relying on Green’s function ap-
proximations and thus avoiding any inaccuracy issues associated with time migration
(Fomel, 2013). We use the method of Sava and Fomel (2005) to define wave prop-
agation in an alternative coordinate system and to connect it with the theory that
relates time-migration velocities to velocity models in depth (Cameron et al., 2007).
We show that, when the wave equation is transformed into the image-ray coordinate
system, its coefficients are simply related to ideal time-migration velocities. There-
fore, accurate one-way or two-way wave-equation imaging can be accomplished by
using information that is readily obtainable from conventional time-domain process-
ing. This observation leads to a new imaging workflow, which provides a seamless
transition from wave-equation time migration in time domain to wave-equation time
migration in depth domain along with velocity model building in depth domain for
depth imaging. We test the proposed approach using simple synthetic and field data
examples.
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WAVE-EQUATION AND IMAGE RAYS

The phase information contained in seismic waves is governed by the eikonal equation,
which takes the form (Chapman, 2004)

∇T · ∇T =
1

V 2(x)
, (1)

where x is a point in space, T (x) is traveltime from the source to x, and V (x) is the
phase velocity. In an anisotropic medium, the phase velocity depends additionally
on the direction of traveltime gradient ∇T . For simplicity, we limit the following
discussion to the isotropic case and two dimensions. Extensions to anisotropy and
3-D are possible but would complicate the discussion. In 2-D, x = {x, z}, and the
isotropic eikonal equation 1 can be written as(

∂T

∂x

)2

+

(
∂T

∂z

)2

=
1

V 2(x, z)
. (2)

The simplest wave equation that corresponds to eikonal equation 1 is the acoustic
wave equation

∂2W

∂x2
+

∂2W

∂z2
=

1

V 2(x, z)

∂2W

∂t2
, (3)

where W (x, z, t) is a wavefield propagating with velocity V . Equation 3 provides
the basis for a variety of wave-equation migration algorithms, from one-way wave
extrapolation in depth to two-way reverse-time migration (RTM) (Biondi, 2006; Etgen
et al., 2009).

Consider a family of image rays (Hubral, 1977), traced orthogonal to the surface.
Image-ray coordinates x0 and t0 as functions of the Cartesian coordinates x and z
satisfy the following system of partial differential equations (Cameron et al., 2007):

|∇x0|2 =

(
∂x0

∂x

)2

+

(
∂x0

∂z

)2

=
1

J2(x, z)
, (4)

∇x0 · ∇t0 =
∂x0

∂x

∂t0
∂x

+
∂x0

∂z

∂t0
∂z

= 0 , (5)

|∇t0|2 =

(
∂t0
∂x

)2

+

(
∂t0
∂z

)2

=
1

V 2(x, z)
, (6)

with boundary conditions x0(x, 0) = x and t0(x, 0) = 0. Equation 6 is the familiar
eikonal equation 2. Equation 5 expresses the orthogonality of rays and wavefronts
in an isotropic medium. Equation 4 defines the quantity J(x, z) as the geometrical
spreading of image rays.

Applying a change of variables from {x, z} to {x0, t0} transforms eikonal equation 2
to the coordinate system of image rays and leads to an elliptically anisotropic eikonal
equation which is (

∂T

∂x0

)2
1

J2
+

(
∂T

∂t0

)2
1

V 2
=

1

V 2
. (7)
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The corresponding wave equation is given by

∂2W

∂x2
0

V 2
d +

∂2W

∂t20
=

∂2W

∂t2
, (8)

where Vd = V/J . Equation 8 is a particular version of the more general Riemannian
coordinate transformation analyzed by Sava and Fomel (2005). Some other versions of
Riemannian coordinate transformations are analysed by Shragge (2008); Shragge and
Shan (2008). Note that at the surface of observation z = 0, the solution of equation 8
coincides geometrically with the solution of the original Cartesian equation 3.

The significance of equation 8 lies in the following fact established by Cameron
et al. (2007). When time migration is performed using coordinates x0 and t0 and the
conventional traveltime approximation based on the Taylor expansion of diffraction
traveltime around the image ray, such as the classic hyperbolic approximation

t2(x) ≈ t20 +
(x− x0)

2

V 2
0 (x0, t0)

, (9)

the coefficient Vd appearing in equation 8 is simply related to time-migration velocity
V0 appearing in equation 9. More specifically,

V 2
d (x0, t0) =

V 2

J2
=

∂ [t0 V 2
0 (x0, t0)]

∂t0
. (10)

Following Cameron et al. (2008a), we call Vd Dix velocity because it corresponds to
the classic Dix inversion applied to the time-migration velocity (Dix, 1955). In the
absence of lateral velocity variations (a V (z) medium), image rays do not spread;
therefore, J = 1, Vd = V and corresponds to true velocity in the medium, and V0

corresponds to root-mean-square (RMS) velocity. In the presence of lateral velocity
variations, the conversion between time-migration coordinates and true Cartesian
coordinates is more complicated (Bevc et al., 1995; Cameron et al., 2008a; Li and
Fomel, 2015). However, to extrapolate seismic wavefields in image-ray coordinates
using equation 8, it is sufficient to use an estimate of the Dix velocity Vd, which is
readily available from conventional time-domain processing and equation 10.

WORKFLOW: WAVE-EQUATION TIME MIGRATION

We propose the following workflow for bridging the gap between time- and depth-
domain imaging.

Step 1. Time migration velocity analysis

Automatic velocity analysis in the process of time migration can be accomplished
either by scanning a set of different velocities (Yilmaz et al., 2001) or by wave ex-
trapolation in the image-velocity space (Fomel, 2003). It is also possible to estimate
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time-migration velocity after stack or from limited-offset data by separating and imag-
ing seismic diffractions (Harlan et al., 1984; Fomel et al., 2007; Burnett and Fomel,
2011; Dell and Gajewski, 2011; Coimbra et al., 2013; Decker et al., 2017). Alterna-
tively, time-migration velocity can be estimated directly from prestack data as a data
attribute controlled by local slopes of reflection events (Fomel, 2007b; Cooke et al.,
2009). Other work on time-migration velocity analysis includes Gelius and Tygel
(2015); Santos et al. (2015); Glöckner et al. (2016).

Step 2. Dix conversion

Applying equation 10 for converting RMS velocity V0(x0, t0) to Dix velocity Vd(x0, t0)
in practice requires special care because of possible noisy measurements. Large vari-
ations in RMS velocities produce rapid variations in interval velocities which leads to
unstable Dix inversion. It helps to formulate Dix conversion as a linear estimation
problem and use regularization for constraining its solution (Clapp et al., 1998; Valen-
ciano et al., 2004; Fomel and Guitton, 2006; Fomel, 2007a). We use least-squares and
shaping regularization for stable conversion of RMS velocities to interval velocities.

Step 3. Wave-equation time migration

Any of the available imaging techniques, such as Kirchhoff migration, one-way wave-
equation migration, or two-way reverse-time migration can be utilized to perform
seismic imaging in image-ray coordinates using equation 8. Moreover, staying in this
coordinate system allows migration velocity analysis and model building to be per-
formed for estimating the Dix velocity Vd(x0, t0) instead of the usual seismic velocity
V (x, z).

Step 4. Conversion from time to depth

Conversion from time to depth coordinates and from Vd(x0, t0) to V (x, z) is a non-
trivial inverse problem. The problem involves not only a coordinate transformation
(Hatton et al., 1981; Larner et al., 1981) but also a correction for the geometrical
spreading of image rays. As shown by Cameron et al. (2009), the problem can be
reduced to solving an initial-value (Cauchy) problem for an elliptic PDE (partial dif-
ferential equation), which is a classic example of a mathematically ill-posed problem.
To arrive at this formulation, let us transform the system of equations 4-6 into the
image-ray coordinate system. The system of equations for inverse functions takes the
form (Li and Fomel, 2015)

(
∂x

∂x0

)2

+

(
∂z

∂x0

)2

= J2 , (11)
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∂x

∂x0

∂x

∂t0
+

∂z

∂x0

∂z

∂t0
= 0 , (12)(

∂x

∂t0

)2

+

(
∂z

∂t0

)2

= V 2 , (13)

with boundary conditions x(x0, 0) = x0 and z(x0, 0) = 0.

From equation 12, it follows that

∂x

∂t0
= −

∂z

∂x0

∂z

∂t0
∂x

∂x0

. (14)

Substituting this expression into equation 13 and using equation 11 leads to

∂x

∂t0
= Vd(x0, t0)

∂z

∂x0

, (15)

∂z

∂t0
=

V

J

∂x

∂x0

= Vd(x0, t0)
∂x

∂x0

, (16)

where both ∂z/∂t0 and ∂x/∂x0 are assumed to remain positive (image rays propagate
down and do not cross). Finally, decoupling the system by using the equivalence of
the second-order mixed derivatives produces the following system of two linear elliptic
PDEs:

∂

∂x0

(
Vd

∂x

∂x0

)
+

∂

∂t0

(
1

Vd

∂x

∂t0

)
= 0 , (17)

∂

∂x0

(
Vd

∂z

∂x0

)
+

∂

∂t0

(
1

Vd

∂z

∂t0

)
= 0 . (18)

Additional initial conditions,

∂x

∂t0

∣∣∣∣∣
t0=0

= 0 , (19)

∂z

∂t0

∣∣∣∣∣
t0=0

= Vd(x0, 0) . (20)

specify that the image rays propagate down normal to the surface. If it were possible
to solve system 17-18 directly using only initial conditions, the shape of image rays
could be determined, and the true velocity could be estimated from equation 13.
Unfortunately, this problem is mathematically ill-posed, which leads to numerical
instability (Tikhonov and Arsenin, 1977). It can be approached, however, through
regularization techniques (Cameron et al., 2009).

Li and Fomel (2015) develop robust time-to-depth conversion, which uses equa-
tions 4-6 in the Cartesian coordinate system and formulates time-to-depth conversion
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as a regularized least-squares optimization problem. Using linearization with respect
to velocity perturbations Sripanich and Fomel (2018) reformulate equations 17-18 for
fast time-to-depth conversion appropriate for handling weak lateral variations. Weak
lateral variation assumption is important because in case of strong lateral variations,
there is no longer a one-to-one mapping between image-ray coordinates and Cartesian
coordinates, and the coordinate transformation will also have a zero determinant (at
the caustics of the image-ray field). Using Sripanich and Fomel (2018), the squared
Dix velocity converted to depth wd(x, z) is given as

wd(x, z) ≈ wdr(x, z) +

(
∆x0(x, z)× ∂wd

∂x0

(x, z)

)
+

(
∆t0(x, z)× ∂wd

∂t0
(x, z)

)
, (21)

where wdr(x, z) denotes the wd(x0, t0) converted to depth based on the laterally ho-
mogeneous background assumption, and the derivatives with respect to x0 and t0 are
evaluated first in the original (x0, t0) coordinates followed by a similar conversion.

Step 5. Velocity model building

Finally, equipped with an estimate of the seismic velocity in Cartesian coordinates
and a well-focused image, one could continue to refine the velocity model by using
any of the conventional velocity estimation techniques (Robein, 2003; Jones, 2010).

EXAMPLES

Linear-gradient model

We start with a toy example of a linear-gradient model similar to the one used by
Baina et al. (2002). The velocity in Figure 1a changes with a constant gradient tilted
at 45◦. In this model, the exact velocity is given by

v(x, z) = v0 + gzz + gxx , (22)

where v0 = 1 km/s, gz = 0.15 1/s, and gx = 0.15 1/s. Four reflectors with varying
shapes are embedded in the model. Reflection data in Figure 1b are modeled using
the Kirchhoff modeling. The migration velocity squared wm and its Dix-inverted
counterpart wd are given by the following expression (Li and Fomel, 2015)

wm(x0, t0) =

(
(v0 + gxx0)

2

t0 (g coth(gt0)− gz)

)2

, (23)

wd(x0, t0) =

(
(v0 + gxx0)g

g cosh(gt0)− gz sinh(gt0)

)2

. (24)

The time-migration velocity computed using the analytical expression from Li and
Fomel (2015) is shown in Figure 2a. The Kirchhoff time migration in Figure 2b fails
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to focus the image accurately because of strong lateral velocity variations. Figure 3a
shows the Dix velocity that we further use to obtain the image by wave-equation time
migration using reverse-time migration in image-ray coordinates (Dell et al., 2014) as
shown in Figure 3b. The image is correctly focused but distorted because of image-ray
bending. Bending image rays in Figure 4a correspond to the time-migration velocity
shown in Figure 2a. The analytical solutions to time-to-depth conversion are (Li and
Fomel, 2015)

x0(x, z) = x +

√
(v0 + gxx)2 + g2

xz
2 − (v0 + gxx)

gx

, (25)

t0(x, z) =
1

g
arccosh

g2
(√

(v0 + gxx)2 + g2
xz

2 + gzz
)
− vg2

z

vg2
x

 . (26)

Figure 4b shows time-migration images converted to Cartesian coordinates. The
image by wave-equation time migration is now both well focused, correctly positioned
in depth, and is comparable in quality to the depth migrated image in Figure 4c. Both
images are created using low-rank reverse-time migration (Fomel et al., 2013).

(a)

(b)

Figure 1: Simple synthetic model (a) Velocity model. (b) Zero-offset data.



Fomel & Kaur 9 Wave-equation time migration

(a)

(b)

Figure 2: (a) Time migration velocity, and (b) Image obtained by Kirchhoff time
migration.
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(a)

(b)

Figure 3: (a) Dix velocity, and (b) Image obtained by wave-equation time migration
using RTM in image-ray coordinates. All events are correctly focused in image-ray
coordinates but appear in a distorted coordinate frame.
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(a)

(b)

(c)

Figure 4: (a) Image rays (curves of constant x0) and wavefronts (curves of constant t0).
(b) Image obtained using wave-equation time migration after conversion to Cartesian
coordinates, and (c) Image obtained using depth migration using RTM in Cartesian
coordinates.
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Nankai field data example

To test the algorithm with field data, we first start with the Nankai data set (Forel
et al., 2005). We preprocessed the data set to correct for uneven bathymetry, ground
roll attenuation and surface consistent amplitude correction. In order to obtain the
migration velocity, we use Fowler (1984) dip moveout. The resultant migration veloc-
ity in Figure 5b is used to perform Kirchhoff time migration in Figure 5c of the stacked
section in Figure 5a. Next, we convert the migration velocity to the Dix velocity in
Figure 6a and subsequently use it for wave-equation time migration in Figure 6b.
Zoomed in sections of the conventional time migration and wave-equation time mi-
gration (Figure 7) show that the image obtained by wave-equation time migration is
correctly focused near the water column with faults and subduction zone migrated
to their true subsurface locations whereas time migration fails to focus the image
accurately because of the strong lateral velocity variations. The image obtained by
wave-equation time migration is still in time coordinates. We transform it to depth
coordinates using the fast time-to-depth conversion algorithm (Sripanich and Fomel,
2018). Figure 8 shows Dix-inverted migration velocity squared wdr(x, z) and its gra-
dients evaluated in the time-domain coordinates that are used to compute the interval
velocity by fast time to depth algorithm along with the image ray coordinate system
as shown in Figure 9a and 9b respectively. Applying time-to-depth conversion to
image obtained after Wave-equation time migration in Figure 10a and comparing it
with depth migrated image in Figure 10b (obtained using estimated interval velocity
with time-to depth conversion from Dix velocity models) we see that results are com-
parable and that the wave-equation time migration image is both correctly focused
and correctly positioned in depth.

Gulf of Mexico field data example

For the final example, we use a Gulf of Mexico field data set (Claerbout, 1995). In
this data set, the maximum recording time is 4.0 s with the maximum offset of 3.48
km. The stacked section along with picked migration velocity and Dix velocity is
shown in Figure 11. We estimate the initial wdr(x, z) automatically using the method
of velocity continuation (Fomel, 2003) followed by 1D Dix inversion to depth which is
similar to the workflow for time-to-depth conversion followed by Li and Fomel (2015),
and Sripanich and Fomel (2018). Using the Dix velocity, we perform wave-equation
time migration as shown in (Figure 12b) which shows improved delineation of faults
as compared to the conventional Kirchhoff time migration as shown in (Figure 12a).
To convert the migrated section after wave-equation time migration to depth domain,
we use fast time to depth conversion algorithm, similarly to the previous example.
The inputs to this model are shown in Figure 13. The output of fast time-to-depth
algorithm is the grid t0− x0 Figure 14a which we use to map the wave-equation time
migration results from time to depth coordinates (Figure 15a) and the estimated
interval velocity in Figure 14b which we use for depth migration in Figure 15b. We
compare the final seismic image after time-to-depth conversion process using wave-
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(a)

(b)

(c)

Figure 5: (a) Stacked section for Nankai field data. (b) Time-migration velocity, and
(c) Image obtained by Kirchhoff time migration.
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(a)

(b)

Figure 6: (a) Dix velocity, and (b) Image obtained by wave-equation time migration
using RTM in image-ray coordinates.
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(a)

(b)

Figure 7: Zoomed in portion (a) Stacked section (b) Conventional time migration
and (c) wave-equation time migration shows that water layer is correctly focused and
faults are delineated more clearly and are migrated to their true subsurface position
with our proposed method as compared to the conventional time migration.

equation time migration with reverse time migration. The results are comparable to
Figure 15b, verifying the effectiveness of the proposed approach.

CONCLUSIONS

The proposed seismic imaging workflow is applicable to areas with mild lateral veloc-
ity variations. Mild variations are required to ensure that image rays do not cross,
so that the mapping between image-ray coordinates and Cartesian coordinates re-
mains one-to-one. We have outlined a theoretical foundation for the central step of
this workflow (wave-equation time migration) and demonstrated its application us-
ing synthetic and field data examples. Wave-equation time migration produces an
image in time-migration (image-ray) coordinates but without using moveout approx-
imations or any other limitations associated with traditional prestack-time-migration
algorithms. The proposed algorithm can be cost effective because it circumvents the
need for multiple migrations that are required to update the velocity model in depth
for the conventional algorithms during the velocity model building process. In com-
plex velocity models, when the image-ray coordinate system breaks down because
of crossing rays, the proposed workflow may not be directly applicable. However,
it can be combined with redatuming (downward extrapolation) to allow the velocity
model to be recursively estimated below the depth of the break-down point. The
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(a)

(b)

(c)

Figure 8: The inputs for time to depth conversion of velocities for the Nankai field
data example: Dix velocity squared wdr and its gradients.
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(a)

(b)

Figure 9: (a) The estimated interval w(x, z) using fast time to depth conversion
algorithm for the Nankai field data example. (b) Image rays (curves of constant x0)
and wavefronts (curves of constant t0).
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(a)

(b)

Figure 10: (a) Image obtained using wave-equation time migration after conversion
to Cartesian coordinates. (b) Image obtained using depth migration using RTM in
Cartesian coordinates.
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(a)

(b)

(c)

Figure 11: (a) Stacked section for Gulf of Mexico field data. (b) Time-migration
velocity, and (c) Dix velocity.
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(a)

(b)

Figure 12: (a) Image obtained using Kirchhoff time migration , and (b) Image ob-
tained using wave-equation time migration using RTM in image-ray coordinates.
Faults marked as F1, F2, F3, F4 and F5 are clearly delineated with the proposed
method as compared to the conventional time migration.
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(a)

(b)

(c)

Figure 13: The inputs for time to depth conversion of velocities for the Gulf of Mexico
field data example: Dix velocity squared wdr and its gradients.
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(a)

(b)

Figure 14: (a) Image rays (curves of constant x0) and wavefronts (curves of constant
t0). (b) The estimated interval w(x, z) using fast time to depth conversion algorithm
for the Nankai field data example.



Fomel & Kaur 23 Wave-equation time migration

(a)

(b)

Figure 15: (a) Image obtained using wave-equation time migration after conversion
to Cartesian coordinates. (b) Image obtained using depth migration using RTM in
Cartesian coordinates.
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proposed algorithm can also be extended to prestack domain which is a subject for
future research.
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