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ABSTRACT

Direct imaging of simultaneous-source (or blended) data, without the need of de-
blending, requires a precise subsurface velocity model. In this paper, we focus on
the velocity analysis of simultaneous-source data using the NMO-based velocity
picking approach. We demonstrate that it is possible to obtain a precise velocity
model directly from the blended data in the common-midpoint (CMP) domain.
The similarity-weighted semblance can help us obtain much better velocity spec-
trum with higher resolution and higher reliability compared with the traditional
semblance. The similarity-weighted semblance enforces an inherent noise attenu-
ation solely in the semblance calculation stage, thus is not sensitive to the intense
interference. We use both simulated synthetic and field data examples to demon-
strate the performance of the similarity-weighted semblance in obtaining reliable
subsurface velocity model for direct migration of simultaneous-source data. The
migrated image of blended field data using prestack kirchhoff time migration
(PSKTM) approach based on the picked velocity from the similarity-weighted
semblance is very close to the migrated image of unblended data.

INTRODUCTION

Simultaneous-source shooting is a breakthrough in modern seismic acquisition, which
can tremendously increase the acquisition efficiency and improve the data quality
(Beasley et al., 1998; Berkhout, 2008; Abma and Yan, 2009). In blended acquisition,
more than one source is shot simultaneously, regardless of the interference. When
more than one source is involved in acquisition, either a denser or a wider shot cov-
erage can be obtained for a given constant acquisition period. The wider coverage
(Figure 1b) here refers to a higher acquisition efficiency while the denser coverage
(Figure 1a) refers to a better-sampled seismic dataset. The attractive benefits are
compromised by the challenges in dealing with strong interference from simultaneous
sources in the acquired seismic data. We can either separate the blended sources into
individual ones as if they were acquired independently, which is also called deblending
(Chen, 2014; Gan et al., 2016), or directly migrate the blended data using newly-
developed imaging schemes (Verschuur and Berkhout, 2011; Tang and Biondi, 2009).
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Deblending can provide similar data as the conventional acquisition and thus not
require a change in post-processing and imaging algorithms, but need specific compu-
tationally expensive technique for the pre-processing (Abma and Yan, 2009; Abma,
2014). Direct imaging does not require any pre-processing steps for observed data
and thus enjoys the benefit of high efficiency, but calls for a tremendously different
processing workflow (Xue et al., 2014; Chen et al., 2015c).

0 1000 2000 3000 4000 5000 6000

0

500

1000

1500

2000

2500

3000

Denser shot coverage

Position (m)

D
ep

th
 (

m
)

(a)

0 1000 2000 3000 4000 5000 6000

0

500

1000

1500

2000

2500

3000

Wider shot coverage

Position (m)

D
ep

th
 (

m
)

(b)

Figure 1: Demonstration of the simultaneous-source geometry. (a) Two-source shoot-
ing for denser coverage. (b) Two-source shooting for wider coverage. Red points
denote shot positions for source 1. Green points denote shot positions for source 2.
Blue points denote receiver positions. Red and green strings denote the shooting rays.
Arrows denote the shooting directions. Borrowed from Chen et al. (2014b).

Because of many reported success of deblending, more and more focus is now
moved towards the direct imaging of blended data. However, one of the most im-
portant components in the direct imaging of simultaneous-source data is the macro
subsurface velocity model of the targeted area. In this paper, we focus on the ve-
locity analysis of the simultaneous-source data. We demonstrate that it is possible
to directly apply the common velocity scanning procedures to the blended data in
the common-midpoint (CMP) domain. We also propose to use the newly developed
similarity-weighted semblance (Chen et al., 2015b; Gan et al., 2015a) to perform the
velocity analysis. Both synthetic and field data examples show that the similarity-
weighted semblance can help obtain higher-resolution and more reliable velocity spec-
trum than the conventional semblance, especially in the case of simultaneous-source
data. The direct imaging of simultaneous-source data based on the directly picked
velocity is also carried out via the prestack kirchhoff time migration (PSKTM) ap-
proach. The performance shows that the migrated image from blended data based on
the picked velocity from similarity-weighted semblance is very close to the migrated
image from unblended data.
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METHOD

Blended acquisition and direct imaging

For a constant-receiver survey, the simultaneous-source data can be expressed as:

d = Γm, (1)

where d is the blended data, Γ is the blending operator, and m is the unblended
data. The formulation of Γ has been introduced in Mahdad (2012) in detail. When
considered in time domain, the Γ corresponds to blending different shot records onto
one receiver record (node) according to the shot schedules of different shots. The
Born modeling from seismic reflectivity to the primary reflections can be expressed
as:

m = Lr, (2)

where r denotes the subsurface reflectivity model and L denotes the Born modeling
operator. One way to remove the effects caused by the blending operator Γ is first
solving equation 1 and then solving equation 2, which is referred to as deblending. The
general deblending framework can be summarized as (Chen et al., 2014a, 2015a):

mn+1 = S(mn + λΓ∗(d− Γmn)), (3)

where S is called the shaping operator, which is used to constrain the current model,
and λ is the step size of the updated misfit. Γ∗ denotes the adjoint of Γ. mn denotes
the deblended data after nth iteration.

Another way for dealing with the simultaneous-source data is to solve the following
equation for r directly, which is known as direct imaging of blended data,

d = Fr, (4)

where F = ΓL.

Equation 4 can be best solved using a least-squares (LS) based migration approach.
More robust LS solvers involve adding constraints of structural coherency when
inverting r, either in a preconditioned LS formulation (Dai and Schuster, 2011; Chen
et al., 2015c) or in a shaping-regularized LS iterative framework (Fomel, 2007b; Xue
et al., 2014).

Because of the great success of deblending reported in the literature (Abma et al.,
2010; Mahdad et al., 2011; Beasley et al., 2012; Li et al., 2013; Gan et al., 2015b;
Zu et al., 2015; Chen, 2015) in the recent years, more and more focus is currently
moving towards the direct imaging of blended data, which can be more efficient and
can illuminate the surface better (Verschuur and Berkhout, 2011; Berkhout et al.,
2012). It is worth mentioning that the deblending step for the massive blended data
requires large computational resources (mainly for the parallel processing of a huge
number of common receiver gathers) and a long processing period because of the
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thousands of iterations used for each common receiver gather. If the direct imaging
can obtain a good result, we can obtain a big saving in both computational resources
and processing period. However, a key aspect for the success of direct imaging is
the macro velocity model of subsurface. Either tomography based velocity analysis
or Born-approximation wave-equation based velocity inversion, requires an initial
acceptable velocity model from the very noisy blended data (Figure 9a shows an
example). In the next section, we will introduce a way for obtaining high-resolution
and high-fidelity velocity spectrum from blended data, using the recently developed
similarity-weighted semblance.

Velocity analysis of blended data using similarity-weighted
semblance

The conventional semblance is defined by Neidell and Taner (1971) as:

C[i] =

i+M∑
j=i−M

(
N−1∑
k=0

s[j, k]

)2

N
i+M∑
j=i−M

N−1∑
k=0

s2[j, k]

, (5)

where i and j are time sample indices, C[i] denotes the conventional semblance for
time index i, 2M + 1 is the length of the smoothing window along the time axis, and
s[j, k] is the trace amplitude at time index j and trace number k of the NMO-corrected
CMP gather.

The weighted semblance introduced in Chen et al. (2015b) can be summarized as:

W [i] =

i+M∑
j=i−M

(
N−1∑
k=0

s[j, k]w[j, k]

)2

i+M∑
j=i−M

(
N−1∑
k=0

s2[j, k]
N−1∑
k=0

w2[j, k]

) , (6)

where W [i] denotes the weighted semblance, w[j, k] denotes the weighting function
for time index j and trace number k.

There have existed several weighting criteria, such as the AB semblance (Fomel,
2009), offset-prior semblance (Luo and Hale, 2012), and the similarity-weighted sem-
blance (Chen et al., 2015b). As the similarity-weighted semblance can improve the
resolution of velocity spectrum greatly, and has the possibility to subtract noise effect,
we choose the local similarity (Fomel, 2007a) to weight different traces:

w[j, k] = L(s[j, k], r[j]), (7)
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where L(x,y) denotes the local similarity between traces x and y, r[j] denotes the jth
time point for a selected reference trace r. In this paper, the reference trace is chosen
as the stacked trace using a conventional stacking technique. Figure 2 shows a demon-
stration of the velocity spectrum calculated using the similarity-weighted semblance
compared with the velocity spectrum calculated using the traditional semblance. The
left panel in Figure 2 shows a simple synthetic data with four hyperbolic events. The
middle and right panels show the velocity spectrum calculated using the traditional
and the proposed semblance, respectively. It is obvious that the similarity-weighted
semblance is of high resolution.

Figure 2: A brief comparison between the similarity-weighted semblance and the
conventional semblance. Left: simple synthetic data. Middle: semblance map using
the conventional semblance. Right: semblance map using the similarity-weighted
semblance.

It is worth mentioning that, the selection of the reference trace needs several iter-
ations in practice. It is obvious that the similarity-weighted semblance is calculated
with an inherent denoising ability. The noise attenuation involved in the similarity-
weighted semblance is much similar to that used in Liu et al. (2009) for attenuating
random noise in the stacking process. Because of intense interference existing in the
simultaneous-source data, conventional semblance will decrease the resolution because
of the corruption by the blending interference. However, the beauty of the similarity-
weighted semblance is that it enforces an inherent noise attenuation solely in the
semblance calculation stage, without any extra process specifically designed for noise
attenuation. The key element that enables the anti-noise ability of the similarity-
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weighted semblance is the local similarity based weights. In the next part, we will
review the basic theory of the local similarity.

Local similarity

A common way to measure the similarity between two signals is to calculate the global
correlation coefficient:

γ =

N∑
i=1

a(i)b(i)√√√√ N∑
i=1

a2(i)
N∑
i=1

b2(i)

, (8)

where γ is the global correlation coefficient, N denotes the number of samples of the
signals a and b. In order to calculate the similarity between two signals locally, one
can use the localized correlation coefficient:

γm(t) =

t+m/2∑
i=t−m/2

a(i)b(i)√√√√ t+m/2∑
i=t−m/2

a2(i)

t+m/2∑
i=t−m/2

b2(i)

, (9)

where γm(t) denotes the local correlation coefficient, m is the local window size.
Fomel (2007a) designed an elegant way to calculate the local similarity:

γ(t) =
√
γ1(t)γ2(t), (10)

γ1(t) = arg min
γ1(t)

(∑
t

(a(t)− γ1(t)b(t)) +R(γ1(t))

)
, (11)

γ2(t) = arg min
γ2(t)

(∑
t

(b(t)− γ2(t)a(t)) +R(γ2(t))

)
. (12)

Equation 10 represents that the local similarity can be expressed as the product of
two vectors that are the solutions of two minimization problems. R is a regularization
operator for constraining γ1 and γ2. R can be chosen as a local triangular smoother
to enforce the smoothness of vectors γ1 and γ2, and then equations 11 and 12 can be
solved using the shaping regularization (Fomel, 2007b):

γ1 = [λ21I + S(BTB− λ21I)]−1SBTa, (13)

γ2 = [λ22I + S(ATA− λ22I)]−1SATb, (14)

where A is a diagonal operator composed from the elements of a: A = diag(a) and
B is a diagonal operator composed from the elements of b: B = diag(b). S is a
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smoothing operator, and λ1 and λ2 are two parameters controlling the physical di-
mensionality and enabling fast convergence when inversion is implemented iteratively.
These two parameters can be chosen as the least-squares norms of A and B (Fomel,
2007a).

The local similarity algorithm can be used for the calculation of signals of any
dimension. For 1D signals, the meanings of equations 13 and 14 are intuitive. For 2D
or higher-dimensional signals, each signal is first reshaped into a 1D signal and then
follows equations 13 and 14 to calculate the local similarity vector. The smoothing
operator is applied to the 2D or multi-dimensional form of the original signal to
enforce the smoothness in any dimension. Figures 3 and 4 show demonstrations for
both 1D and 2D signals. Figures 3a and 3b show the same trace with different level of
noise. Figure 3c shows the calculated local similarity for the 1D signal. Figures 4a and
4b show the same flattened gather with different level of noise. Figure 4c shows the
calculated local similarity for the 2D signal. From the two examples, we can conclude
that the local similarity can effectively obtain smooth and reasonable measurements
for both 1D and 2D signals. The peaks in the calculated local similarity indicate the
position of useful wavelets correctly.

EXAMPLES

The first example is a synthetic example. Figure 5 shows the unblended and blended
data in the CMP domain. The blending fold is very high and thus the blended
data is very noisy. It should be mentioned that before the processing, we need to
apply the domain transformation. That is to say: transform the data from shot
domain to midpoint domain. The domain transformation corresponds to the following
transformation relation:

m =
1

2
(s + r),

h =
1

2
(s− r),

(15)

where m and h denotes the midpoint and offset locations, s and r denotes the source
and receiver locations. Here, we leave out the domain transformation (Chen et al.,
2014b) between common shot point (CSP) domain and CMP domain, and just show
the data in the CMP domain. Figure 6 shows the comparison of the velocity spectrum
using conventional semblance and similarity-weighted semblance. As we know the
exact velocity of this synthetic example, we can compare the velocity spectrum with
the true velocity in order to judge the performance of different semblance approaches.
As we can see from the comparison, the similarity-weighted semblance can obtain
obviously higher resolution and more reliable spectrum. The black strings on the
top of the spectrum maps denote the true velocity. The two frame boxes highlight
two regions of obvious difference. From the two highlighted frame boxes, it is much
clearer that the similarity-weighted semblance can get more reliable result.
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Figure 3: Local similarity for 1D signal. (a) & (b) The same trace with different level
of noise. (c) Calculated local similarity.
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Figure 4: Local similarity for 2D signal. (a) & (b) The same flattened gather with
different level of noise. (c) Calculated local similarity.
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The second example is a field data example with multiples. Figure 7 shows the
unblended and blended data in the CMP domain. Figure 8 shows a comparison be-
tween different velocity spectrum for both unblended and blended data. Because in
this case, we do not have the true velocity model, we can only use the spectrum
of unblended data as a reference. The left and middle left figures in Figure 8 cor-
respond to the velocity spectrum of unblended data using conventional semblance
and similarity-weighted semblance, respectively. The middle right and right figures
in Figure 8 correspond to the velocity spectrum of blended data using conventional
semblance and similarity-weighted semblance, respectively. In this case, we also have
the spectrum of multiples. It is obvious that the similarity-weighted semblance can
obtain higher resolution for both unblended and blended data. Comparing the middle
right and right figures, we can conclude that the similarity-weighted semblance can
be more reliable for velocity picking.

The third example is a numerically blended field data example in the case of high
blending ratio (the interference is very strong). The numerically blended data is
shown in Figure 9a. Because of the strong blended interference, it is hard to detect
the useful reflections. In this example, the conventional semblance can not obtain
an acceptable velocity spectrum, as shown in Figure 9b. The peaks in the velocity
spectrum map are nearly smeared in the background noise. However, we can still
obtain well-behaved velocity peaks, using the proposed high-resolution similarity-
weighted semblance, which distinguish themselves with the background noise. The
peaks can be picked either manually or automatically.

The fourth example is a numerically blended prestack field data. Figures 10a and
10b show the unblended and blended data that have been sorted from CSP gathers
to CMP gathers. This example is used to simulate the independent marine-streamer
simultaneous shooting (IMSSS) acquisition (Chen et al., 2014b). The blending in-
terference is so strong that the useful reflections are nearly smeared in the noise.
Figure 11a shows the velocity spectrum of the unblended data using the traditional
semblance. Figure 11b shows the velocity spectrum of the blended data using the tra-
ditional semblance. Figure 11c shows the velocity spectrum of the blended data using
the proposed high-resolution semblance. It is obvious that the traditional semblance
can obtain good performance for clean unblended data. However, the traditional sem-
blance cannot obtain a reasonable velocity spectrum for the blended data. Because
of the strong blending interference, the traditional semblance cannot generate energy
peaks in the spectrum that can be easily picked. Fortunately, the high-resolution
similarity-weighted semblance can help obtain much focused peaks in the velocity
spectrum that can be picked. With the automatically picked velocity (Fomel, 2009)
from the velocity spectrum shown in Figure 11, we can obtain their corresponding
migration results. Here, it is worth giving a brief introduction about the automatic ve-
locity picking algorithm. Although the automatic velocity picking problem was men-
tioned by several researchers in the literature (Adler and Brandwood, 1999; Sarkar
and Baumel, 2000; Harlan, 2001; Arnaud et al., 2004), we use the approach proposed
in Fomel (2009). The main principle of the approach is to solve the following eikonal
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equation (
∂T

∂v

)2

+
1

α2

(
∂T

∂t

)2

= e−2w(t,v), (16)

where T is the traveltime, w(t, v) corresponds to the semblance spectrum, and α de-
notes a scaling parameter. After obtaining a finite-difference solution of equation 16,
we can extract the picking trajectory v(t) by tracking backward along the traveltime
gradient direction.

The migrated profiles using the prestack kirchhoff time migration (PSKTM) al-
gorithm for different cases are shown in Figure 12. Figure 12a shows the migrated
profile for unblended data using the traditional semblance method. Figures 12b and
12c show the migrated profiles for blended data using the traditional semblance and
the proposed high-resolution semblance, respectively. In this example, we can con-
sider Figure 12a as the true answer, and judge the performance of different approaches
by comparing the migrated results with Figure 12a. We can observe huge difference
between Figures 12a and 12b. However, Figures 12a and 12c are more similar. We
can confirm this observation by zooming a part from the original migrated profiles.
Figure 13 shows the zoomed sections that correspond to the frame boxes shown in
Figure 12. It is more obvious that Figures 13a and 13c show very similar reflections,
while Figure 13b is much different from the other two cases. The erroneous reflections
in Figure 13b indicate erroneous picked velocities using the traditional semblance.

CONCLUSION

We have demonstrated that it is possible to use NMO-based velocity analysis approach
to obtain an acceptable velocity model from the very noisy simultaneous-source data.
The similarity-weighted semblance can obtain a better velocity spectrum than the
conventional semblance, with higher resolution and reliability. When the blending in-
terference is so strong that the seismic reflections can not be observed, the similarity-
weighted semblance can still show plausible energy peaks in the velocity spectrum,
and the peaks can be picked easily. We use both simulated synthetic and field data
examples to show the potential of the similarity-weighted semblance in velocity anal-
ysis of simultaneous-source data. We also compare the migrated images of unblended
field data, and numerically blended field data using different picked velocities. The
migrated image of blended data using the picked velocity from the similarity-weighted
semblance is very close to the migrated image of unblended data, which shows great
potential that the separation of simultaneous sources is no longer necessary.
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Figure 5: Synthetic data example. Left: Unblended CMP gather. Right: Blended
CMP gather.
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Figure 6: Left: Velocity spectrum of blended data using the conventional semblance.
Right: Velocity spectrum of blended data using the high-resolution semblance.
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Figure 7: Field data example. Left: Unblended CMP gather. Right: Blended CMP
gather.
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Figure 8: Left: Velocity spectrum of unblended data using conventional semblance.
Middle left: Velocity spectrum of unblended data using similarity-weighted sem-
blance. Middle right: Velocity spectrum of blended data using the conventional
semblance. Right: Velocity spectrum of blended data using the high-resolution sem-
blance.
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Figure 9: (a) Blended CMP gather with strong blending interference. (b) Velocity
spectrum using the conventional semblance. (c) Velocity spectrum using the high-
resolution semblance.

(a) (b)

Figure 10: Gulf of Mexico data example. (a) Unblended field data. (b) Numerically
simulated field data.
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(a) (b)

(c)

Figure 11: Comparison of velocity spectrum. (a) Velocity analysis of unblended
data using the traditional approach. (b) Velocity analysis of blended data using
the traditional approach. (c) Velocity analysis of blended data using the proposed
approach.
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(a) (b)

(c)

Figure 12: Comparison of migration results. (a) PSKTM of unblended data using
the traditional picked velocities. (b) PSKTM of blended data using the traditional
approach. (c) PSKTM of blended data using the proposed approach.
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(a) (b)

(c)

Figure 13: Comparison of zoomed migration results. (a) PSKTM of unblended data
using the traditional approach. (b) PSKTM of blended data using the traditional
approach. (c) PSKTM of blended data using the proposed approach.
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