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ABSTRACT

The K-SVD algorithm has been successfully utilized for adaptively learning the
sparse dictionary in 2D seismic denoising. Because of the high computational
cost of many SVDs in the K-SVD algorithm, it is not applicable in practical sit-
uations, especially in 3D or 5D problems. In this paper, I extend the dictionary
learning based denoising approach from 2D to 3D. To address the computational
efficiency problem in K-SVD, I propose a fast dictionary learning approach based
on the sequential generalized K-means (SGK) algorithm for denoising multidi-
mensional seismic data. The SGK algorithm updates each dictionary atom by
taking an arithmetic average of several training signals instead of calculating a
SVD as used in K-SVD algorithm. I summarize the sparse dictionary learning
algorithm using K-SVD, and introduce SGK algorithm together with its detailed
mathematical implications. 3D synthetic, 2D and 3D field data examples are
used to demonstrate the performance of both K-SVD and SGK algorithms. It
has been shown that SGK algorithm can significantly increase the computational
efficiency while only slightly degrading the denoising performance.

INTRODUCTION

Seismic data is inevitably corrupted by random noise in field acquisition, with im-
portant consequences for oil and gas exploration. Thus, random noise attenuation
plays a fundamental role in seismic data processing and interpretation (Gulunay,
2000; Zhuang et al., 2015; Qu et al., 2015; Gan et al., 2016d; Li et al., 2016b,a).
Over the past few decades, a large number of denoising methods for random noise
have been developed. Prediction based methods utilize the predictable property of
useful signals to construct prediction filters for enhancing signals and rejecting noise,
for example, t-x predictive filtering (Abma and Claerbout, 1995), f-x deconvolution
(Canales, 1984), the forward-backward prediction approach (Wang, 1999), the polino-
mial fitting based approach (Liu et al., 2011), non-stationary predictive filtering (Liu
et al., 2012; Liu and Chen, 2013). Mean and median filters utilize the statistical dif-
ference between signal and noise to reject the Gaussian white noise or impulsive noise
(Liu et al., 2009b; Liu, 2013; Gan et al., 2016c). Decomposition based approaches
decompose the noisy seismic data into different components and then select the prin-
cipal components to represent the useful signals. Empirical mode decomposition and
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its variations (Huang et al., 1998), singular value decomposition based approaches
(Bekara and van der Baan, 2007; Chen and Ma, 2014; Gan et al., 2015a), regularized
non-stationary decomposition based approaches (Fomel, 2013) are usually used to ex-
tract the useful components in multidimensional seismic data. Rank-reduction based
approaches assume the seismic data to be low-rank after some data rearrangement
steps, such methods include the Cadzow filtering (Trickett, 2008), principal compo-
nent analysis (Huang et al., 2016b), singular spectrum analysis (Oropeza and Sacchi,
2011; Huang et al., 2017), damped singular spectrum analysis (Huang et al., 2016a;
Zhang et al., 2016; Chen et al., 2016b,c).

The sparse transform based random noise attenuation is one of the most widely
used approaches (Zhang et al., 2015; Chen, 2016). Not only in seismic data processing,
but also in all image processing fields, transformed domain thresholding approach
has achieved very successful performance (Protter and Elad, 2009; Cai et al., 2013).
The denoising step can be implemented by simply applying a thresholding operator
in the transformed sparse domain, followed by an inverse sparse transform. Sparse
transform can be divided into two types: analytical transform, which has an exact
basis, and learning-based dictionary, which iteratively updates the basis by learning
(Chen et al., 2016a). I will use transform and dictionary to refer to these two types
of sparse transform, respectively, in this paper.

A lot of transforms have been used in denoising seismic data. Gao et al. (2006)
used the wavelet transform to denoise prestack seismic data. Wang et al. (2008) used
the second-generation wavelet transform, which is based on the lifting scheme, to de-
noise seismic data with a percentile thresholding strategy. Hennenfent and Herrmann
(2006) and Neelamani et al. (2008) applied the curvelet transform to attenuate both
random and coherent noise in seismic data. Zu et al. (2016) applied the curvelet
transform to separate simultaneous sources based on the iterative soft-thresholding
algorithm. Fomel and Liu (2010) designed a sparse transform that is tailored specifi-
cally for seismic data, which is called seislet transform, for sparse representation based
processing of seismic data, including seismic denoising (Chen, 2016; Wu et al., 2016),
seismic deblending (Chen et al., 2014; Gan et al., 2016b), and data restoration (Gan
et al., 2015b, 2016a; Liu et al., 2016). Chen and Fomel (2015a) used the adaptive sep-
aration properties of empirical mode decomposition (EMD) (Huang et al., 1998) for
preparing the stable input for the non-stationary 1D seislet transform and proposed a
new EMD-seislet transform to denoise seismic data with strong spatial heterogeneity.
Recently, Kong and Peng (2015) applied the shearlet transform to seismic random
noise attenuation.

The learning-based dictionaries are becoming more and more popular for seis-
mic data processing in recent years since their superior performances in adaptively
learning the basis that can sparsely represent the complicated seismic data (Sahoo
and Makur, 2013). Kaplan et al. (2009) used a data-driven sparse-coding algorithm
to adaptively learn basis functions in order to sparsely represent seismic data and
then perform denoising in the transformed domain. Based on a variational sparse-
representation model, Beckouche and Ma (2014) proposed a denoising approach by
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adaptively learning dictionaries from noisy seismic data. Chen et al. (2016a) com-
bined the learning based dictionaries and the fixed-basis transforms and proposed a
double-sparsity dictionary to better handle the special features of seismic data, which
can can separate signals and noise more precisely.

K-SVD is one of the most effective dictionary learning algorithms (Aharon et al.,
2006). However, the computational cost which requires thousands of SVD hinders
its wide application in seismic data processing, especially in practical 3D or 5D prob-
lems. In this paper, I propose to apply a fast dictionary learning algorithm, which is
called sequential generalized K-means (SGK) algorithm (Sahoo and Makur, 2013), to
denoise multidimensional seismic data. Since sparse code is relatively new to the seis-
mic community, I introduce the basic formulation of a sparse representation problem
and mathematically analyze the principle of K-SVD algorithm and clarify its compu-
tational bottleneck. Then, I also introduce the SGK algorithm in detail and apply
both K-SVD and SGK algorithms to denoise multidimensional seismic data. Three
examples show that the SGK algorithm can significantly accelerate the dictionary
learning process and cause no observably worse denoising performance.

METHOD

Problem formulation

Sparse representation via learning based dictionary consists of two main steps.

• Sparse coding. Given the observed data d, sparse coding aims at solving the
optimization problem:

mn = arg min
m
‖ d− Fnm ‖22, s.t. ‖m ‖0≤ T, (1)

where ‖ · ‖2 and ‖ · ‖0 denote the L2 and L0 norms of an input vector, respec-
tively. T is the number of non-zero coefficients. F is the learned dictionary and
m is the sparse representation of d.

• Dictionary updating. For the obtained mn, update Fn such that

Fn+1 = arg min
F
‖ d− Fmn ‖22 . (2)

Equations 1 and 2 are iterated Niter times to learn the optimal dictionary and the
sparest representation.

The multidimensional seismic data is first reformulated into patch form D. Each
column vector in D is extracted from the multidimensional seismic data matrix. An
example is given in Yu et al. (2015) and Chen et al. (2016a). Equations 1 and 2 then
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become

∀imn
i = arg min

mi

‖ D− FnM ‖2F , s.t.∀i ‖mi ‖0≤ T, (3)

Fn+1 = arg min
F
‖ D− FMn ‖2F , (4)

where ‖ · ‖F denotes the Frobenius norm of an input matrix.

Problem 3 is a NP-hard problem, and directly finding the truly optimal M is
impossible and is usually solved by an approximation pursuit method, such as the
orthogonal matching pursuit (OMP) algorithm. To solve problem 4 for the adaptive
dictionary F, there are several different algorithms.

Dictionary learning by K-SVD

The K-SVD method (Aharon et al., 2006) is one approach that solves equation 4
with good performance. The dictionaries in F are not obtained at a time. Instead,
K columns in F are updated one by one while fixing M. In order to update the kth
column, one can first write the objective function in equation 4 as

‖ D− FM ‖2F =‖ D−
K∑
j=1

fjm
j
T ‖

2
F ,

=‖ D−
∑
j 6=k

fjm
j
T − fkm

k
T ‖2F ,

=‖ Ek − fkm
k
T ‖2F ,

(5)

where fj is the jth column vector in F, mj
T is the jth row vector in M. Here,

[·]T simply indicates a row vector. For simplicity, in equation 5 and the following
derivations, I omit the superscript n shown in equation 4. Ek is the fitting error using
all column vectors other than the kth dictionary and their corresponding coefficients
row vectors. Note that in equation 5, D and Ek are of size M × N , F is of size
M ×K, and M is of size K ×N . Here, M is the length of each training signal, N is
the number of training signals, and K is the number of atoms in the dictionary.

It is now obvious that the kth dictionary in F is updated by minimizing the
misfit between the rank-1 approximation of fkm

k
T and the Ek term. The rank-1

approximation is then solved using the singular value decomposition (SVD).

A problem in the direct use of SVD for rank-1 approximation of Ek is the loss of
sparsity in mk

T . After SVD on Ek, mk
T is likely to be filled. In order to solve such

problem, K-SVD restricts minimization of equation 5 to a small set of training signals
Dk = {di : mk

T (i) 6= 0}. To achieve this goal, one can define a transformation matrix
Rk to shrink Ek and mk

T by rejecting the zero columns in Ek and zero entries in mk
T .

First one can define a set rk = {i|1 ≤ i ≤ N,mk
T (i) 6= 0}, which selects the entries in

mk
T that are non-zero. One then constructs Rk as a matrix of size N ×Nk

r with ones
on the (rk(i), i) entries and zeros otherwise.
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Applying Rk to both Ek and mk
T , then the objective function in equation 5 be-

comes
‖ EkRk − fkm

k
TRk ‖2F=‖ ER

k − fkm
k
R ‖2F (6)

and can be minimized by directly using SVD:

ER
k = UΣVT . (7)

fk is then set as the first column in U, the coefficient vector mk
R as the first column of

V multiplied by first diagonal entry σ1. After K columns are all updated, one turns
to solve equation 3 for M.

Fast dictionary learning by sequential generalized K-means

Although K-SVD can obtain very successful performance in a number of sparse repre-
sentation based approaches, since there involves many SVD operations in the K-SVD
algorithm, it is very computationally expensive. Especially when utilized in multidi-
mensional seismic data processing (e.g. 3D or 5D processing), the computational cost
is not tolerable. The sequential generalized K-means algorithm (SGK) was proposed
to increase the computational efficiency (Sahoo and Makur, 2013). SGK tries to solve
slightly different iterative optimization problem in sparse coding as equation 3:

∀imn
i = arg min

mi

‖ D− FnM ‖2F , s.t.∀imi = et. (8)

t indicates that mi has all 0s except 1 in the tth position. The dictionary updating
in SGK algorithm is also different. In SGK, equation 6 also holds. Instead of using
SVD to minimize the objective function, which is computationally expensive, SGK
turns to use least-squares method to solve the minimization problem. Taking the
derivative of J =‖ ER

k − fkm
k
R ‖2F with respect to fk and setting the result to 0 gives

the following equation:

∂J

∂fk
= −2(ER

k − fkm
k
R)(mk

R)T = 0 (9)

solving equation 9 leads to

fk = ER
k (mk

R)T
(
mk

R(mk
R)T
)−1

. (10)

It can be derived further that

ER
k (mk

R)T =

(
DR −

∑
j 6=k

fjm
j
R

)
(mk

R)T

= DR(mk
R)T +

∑
j 6=k

fjm
j
R(mk

R).T
(11)
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Here, DR has the same meaning as D shown in equation 5 except for a smaller size
due to the selection set rk that selects the entries in mk

T that are non-zero.

Since ∀i, ‖mi ‖0= 1, as constrained in equation 8 then

∀j 6=km
j
R(mk

R)T = 0. (12)

Since mk
R is a smaller version of row vector mk

T and all its entries are all equal to
1, DR(mk

R)T is simply a summation over all the column vectors in DR. Considering
that DR = {di : i ∈ rk},

DR(mk
R)T =

∑
i∈rk

di (13)

Following equation 13, equation 11 becomes

ER
k (mk

R)T =
∑
i∈rk

di. (14)

It is simple to derive that mk
R(mk

R)T = Nk
r , where Nk

r denotes the number of elements
in the set rk, or the number of training signals associated with the atom fk. The kth
atom in F is

fk =

∑
i∈rk di

Nk
r

. (15)

Thus, in SGK, one can avoid the use of SVD. Instead the trained dictionary can
be simply expressed as an average of several training signals. In this way, SGK
can obtain significantly higher efficiency than K-SVD. In the next section, I will use
several examples to show that the overall denoising performance does not degrade
when one can obtain a much faster implementation.

EXAMPLES

I will use three different examples to show the performance of SGK in denoising
multidimensional seismic data. Please note that when using equations 3 (or 8) and
4 for dictionary learning, the multidimensional seismic data is first mapped from
the original form to a 2D matrix according to some patching criteria. Some details
about the patching method can be found in Yu et al. (2015) or Chen et al. (2016a).
After iteratively solving equations 3 (or 8) and 4 several times, the denoised data is
expressed as

D̂ = FNiterMNiter. (16)

An inverse mapping is then applied to D̂ to output the finally denoised data.

For measuring the denoising performance of synthetic data examples, where one
knows the clean data, I use the signal-to-noise ratio (SNR) (Liu et al., 2009a; Huang
et al., 2016a) measurement and the formula is expressed as follows:

SNR = 10 log10

‖Dtrue‖2F
‖Dtrue − D̂‖2F

, (17)
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where Dtrue denotes the clean data and D̂ denotes the denoised data.

In addition to the commonly used SNR measurement, one can also use local
similarity (Fomel, 2007; Chen and Fomel, 2015b) as a convenient tool to evaluate
denoising performance. The abnormal area in the local similarity map with high
similarity indicates the area that contains significant signal leakage in the removed
noise. A local similarity map with values that are close to zero, as well as the observed
significant amount of removed noise, provides a valid support of a successful denoising
performance. In addition, the local similarity measurement can be used in many
cases since the input data of local similarity calculation are just the denoised data
and removed noise. It provides an alternative in the case of field data processing,
where the clean data is unknown and the SNR based evaluation becomes unavailable.
Besides, local similarity is a local measurement of denoising performance, whereas
the SNR is a global measurement, which cannot guide us to pick out the areas with
poor denoising performances.

Synthetic example

The first example is a 3D synthetic example, as shown in Figure 1. Figure 1a is the
clean data and Figure 1d is the noisy data. Figures 1b and 1c show the denoised re-
sults using K-SVD and SGK, respectively. Figures 1e and 1f show the removed noise
cubes of two approaches. It seems that the denoised results using both methods are
very successful while the denoised result using SGK algorithm shows a little bit more
residual noise, which is however negligible. The size of this example is 64× 16× 16.
I use a 3D patch of size 4 × 4 × 4 and the overlap between neighbor patches is 3
points in all time, inline, xline directions. In this example, the sample signals D
is of size 64 × 10309. The K-SVD takes 192.60s while SGK takes only 9.27s. The
SNRs of noisy data, K-SVD result and SGK result are 0.68 dB, 9.61dB and 9.32dB
respectively. While the SNRs using the K-SVD and SGK are very similar, the SGK
method obtains about 5 times acceleration. To further demonstrate the denoising
performance and compare the two methods regarding the tiny differences, I plot the
local similarity between denoised data and removed noise in Figure 2. Figures 2a and
2b show the local similarity cubes without amplification that correspond to K-SVD
and SGK methods, respectively. It can be seen that both methods cause negligible
local similarity, or correlation, between denoised data and removed noise, confirming
the extremely successful performance of the two methods. Figures 2c and 2d show
the amplified local similarity cubes (similarity × 2) corresponding to K-SVD and
SGK methods, respectively. It can be observed that there are some non-zero ampli-
fied similarity values around the events, indicating these tiny damages to the signal
caused by both methods. It can also be observed that the amplified local similarity
of SGK method is slightly higher than K-SVD method. Considering the slightly low
SNR using SGK method, I conclude that SGK method might cause slightly worse
performance than the K-SVD method while obtaining a huge improvement on com-
putational efficiency. I also show some learned atoms of this example in Figure 3.
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Figures 3a, 3b, and 3c show the atoms from initial dictionary, K-SVD learned dic-
tionary, and SGK learned dictionary, respectively. I set up the initial dictionary
using the discrete cosine transform. It can be seen from Figure 3a that the shapes of
the atoms in the initial dictionary are rigid, which are not optimal to represent the
highly-nonstationary seismic data. After dictionary learning, the updated dictionar-
ies as shown in Figures 3b and 3c contain atoms with much varied shapes. These
various atoms are more likely to capture the non-stationary features in the seismic
data and thus can potentially improve the sparse representation of the observed noisy
seismic data. Please note that each atom has been reshaped into a 3D cube and only
16 atoms are shown here.

In order to test the denoising performances of the two methods in different noise
levels, I calculate the SNRs of two methods in four different cases with increasing
noise levels (or decreasing input SNRs). The denoising performances of different
input SNRs are compared in table 1. The SNR of input noisy data drops from 3.18
dB to -5.33 dB. Correspondingly, the SNRs of the best results using two methods
drop from above 10 dB to around 1 dB. Besides, the K-SVD method consistently
obtains a slightly higher SNR than SGK method.

In this paper, I compare the speed of SGK with the classic version of K-SVD algo-
rithm (exact SVD calculation). Recently, there are a lot of new algorithms proposed
to approximate SVD instead of exactly computing it, e.g., Rubinstein et al. (2008),
Foster et al. (2012), and Menon and Elkan (2011). These methods can hopefully im-
prove the efficiency of K-SVD algorithm, but at the expense of slightly degrading the
performance. Both K-SVD and SGK use the fast OMP algorithm for sparse coding
in the whole dictionary learning process. In order to compare the computing time
fairly, I repeat the same calculation three times for each model size and calculate the
average time as the final measured computing time.

Input SNR (dB) K-SVD (dB) SGK (dB)
3.18 10.60 10.60
0.68 9.61 9.32
-2.84 2.17 2.08
-5.33 1.27 1.11

Table 1: Comparison of denoising performances with different input SNRs between
K-SVD and SGK methods.

Field data example

I first use a 2D field data example to compare the difference between K-SVD and
SGK methods, as shown in Figure 4. The data size of this example is 512× 512 . In
this example, I choose a patch size of 8×8. The overlap between different patches is 7
points in both vertical and horizontal directions. Thus the atom size M = 8×8 = 64,
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(a) (b) (c)

(d) (e) (f)

Figure 1: 3D synthetic example. (a) Clean data. (b) Denoised data using K-SVD. (c)
Denoised data using SGK. (d) Noisy data. (e) Noise using K-SVD. (f) Noise using
SGK.
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(a) (b)

(c) (d)

Figure 2: (a) & (b) Local similarity between denoised data and removed noise using
K-SVD and SGK. (c) & (d) Amplified local similarity (×2) between denoised data
and removed noise using K-SVD and SGK.
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(a) (b)

(c)

Figure 3: (a) Initial overcomplete DCT dictionary. (b) Learned dictionary using K-
SVD. (c) Learned dictionary using SGK. Only the first 16 atoms in the dictionary
are displayed and each dictionary has been reshaped into a 3D cube. It can see from
(a) that the shapes of the atoms in the initial dictionary (discrete cosine transform)
are rigid, which are not optimal to represent the highly-nonstationary seismic data.
After dictionary learning, the updated dictionaries as shown in (b) and (c) contain
atoms with much varied shapes. These various atoms are more likely to capture the
non-stationary features hidden in the seismic data.



GJI - Chen 2017 12 Fast Dictionary Learning

and the number of sample signals is thus N = (512− 7)× (512− 7) = 255025. The
size of D is 64 × 255025. For K-SVD, the dictionary updating process takes about
1590.2s, while for SGK, the dictionary updating process takes only 87.23s, which
shows a great speedup. Figure 5a shows the initial input dictionary. Figures 5b
and 5c show the learned dictionaries using K-SVD and SGK, respectively. The two
learned dictionaries show some similarities but are not exactly the same. As can be
seen in either Figure 5b or 5c that there are some atoms in the middle part of the
dictionary map containing linear patterns, indicating a better representation of the
locally linear events. In this example, I also compare the K-SVD and SGK methods
with two other widely known methods, i.e. the DDTF method (Cai et al., 2013)
and the seislet transform method (Fomel and Liu, 2010). The denoised results using
four methods are shown in Figure 6. The corresponding noise sections are shown in
Figure 7. Comparing the results in both Figures 6 and 7, I can roughly get some
conclusions that K-SVD, SGK, and DDTF methods all seem to obtain successful
denoised results while the result from seislet transform is a bit over-smoothed, which
causes some observable low-frequency coherent energy in the noise section (Figure
7d). A better evaluation of denoising performance can be obtained using the local
similarity measurement and is shown in Figure 8. The local similarity confirms my
observation in that the local similarity corresponding to seislet method is very high,
which is followed by the DDTF method. The DDTF method obtains a successful
performance in most part of the data but causes some damages to the highly curved
signals around the 2s near the left boundary, as indicated from the local similarity
map (Figure 8c). The K-SVD and SGK methods obtain very close results but SGK
results in a slightly higher local similarity in right part of the data.

I next use a 3D field data example to demonstrate the performance, as shown
in Figure 9. Figures 9a, 9b, and 9c show noisy data, K-SVD denoised data and
SGK denoised data, respectively. Figures 9d and 9e show the noise sections of two
approaches. It is clear that both approaches obtain approximate performance. It is
computationally expensive to use K-SVD to learn the dictionary for this example.
While it takes about half an hour to learn the dictionary using SGK algorithm, it
takes more than half a day to learn the dictionary using the K-SVD algorithm. The
local similarity cubes between denoised data cubes and removed noise cubes using
two methods are shown in Figure 10, which confirms the successful and comparable
performance of both methods in that most part of the data is close to zero.

CONCLUSION

In this paper, I proposed a fast dictionary-learning based seismic denoising approach
using the sequential generalized K-means (SGK) algorithm. In the SGK algorithm,
each atom in the dictionary is updated by an average of several sample signals while
K-SVD uses computationally expensive SVD to update each atom. Thus, the SGK
algorithm can be much faster than K-SVD algorithm for adaptively learning the
dictionary. I applied both K-SVD and SGK to dictionary learning of seismic data
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Figure 4: Noisy 2D field data.

for random noise attenuation. The results from three different examples show that
SGK is much faster than K-SVD without sacrificing much denoising performance. I
suggest substituting the K-SVD with SGK in any applications that require sparse
coding. Future research direction may include applying the SGK based dictionary
learning for multidimensional seismic data reconstruction.
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APPENDIX A: LOCAL SIMILARITY

Let x1 and x2 denote the two signal vectors that are reshaped from a 2D matrix or
3D tensor. In the case of evaluating denoising performance, x1 and x2 simply means
signal and noise. The simplest way to measure the similarity between two signals is
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(a) (b)

(c)

Figure 5: (a) Initial overcomplete DCT dictionary. (b) Learned dictionaries using
K-SVD. (c) Learned dictionaries using SGK. Each atom in the dictionary has been
reshaped into a 2D matrix. As can be seen in either (b) or (c) that there are some
atoms in the middle part of the dictionary map containing linear patterns, indicating
a better representation of the locally linear events.
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(a) (b)

(c) (d)

Figure 6: (a) Denoised data using K-SVD. (b) Denoised data using SGK. (c) Denoised
data using DDTF. (d) Denoised data using seislet thresholding.
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(a) (b)

(c) (d)

Figure 7: (a) Removed noise using K-SVD. (b) Removed noise using SGK. (c) Re-
moved noise using DDTF. (d) Removed noise using seislet thresholding.
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(a) (b)

(c) (d)

Figure 8: Local similarity between denoised data and removed noise using (a) K-SVD,
(b) SGK, (c) DDTF and (d) seislet thresholding.
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(a) (b) (c)

(d) (e)

Figure 9: (a) Noisy 3D field data. (b) & (c) Denoised data using K-SVD and SGK.
(d) & (e) Noise cubes using K-SVD and SGK.

(a) (b)

Figure 10: (a) Local similarity between denoised data using K-SVD and the corre-
sponding noise cube. (b) Local similarity between denoised data using SGK and the
corresponding noise cube.
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to calculate the correlation coefficient,

c =
xT
1 x2

‖ x1 ‖2‖ x2 ‖2
, (18)

where c is the correlation coefficient, xT
1 x2 denotes the dot product between x1 and

x2. ‖ · ‖2 denotes the L2 norm of the input vector. A locally calculated correlation
coefficient can be used to measure the local similarity between two signals,

c(i) =

∑Nw/2
iw=−Nw/2 x1(i+ iw)x2(i+ iw)√∑Nw/2

iw=−Nw/2 x1(i+ iw)2
√∑Nw/2

iw=−Nw/2 x2(i+ iw)2
, (19)

where x1(i) and x2(i) denote the ithe entries of vectors x1 and x2, respectively. iw
denotes the index in a local window. Nw + 1 denotes the length of each local window.
The windowing is sometime troublesome, since the measured similarity is largely
dependent on the windowing length and the measured local similarity might be dis-
continuous because of the separate calculations in windows. To avoid the negative
performance caused by local windowing calculations, Fomel (2007) proposed an el-
egant way for calculating smooth local similarity via solving two inverse problems.
The local similarity I use to evaluate denoising performance in this paper is defined
as

s =
√
s1 ◦ s2, (20)

where s is the calculated local similarity, ◦ denotes Hadamard (or Schur) product,
and s1 and s2 come from two least-squares inverse problem:

s1 = arg min
s̃1
‖x1 −X2s̃1‖22, (21)

s2 = arg min
s̃2
‖x2 −X1s̃2‖22, (22)

where X1 is a diagonal operator composed from the elements of x1: X1 = diag(x1)
and X2 is a diagonal operator composed from the elements of x2: X2 = diag(x2).
Equations 21 and 22 are solved via shaping regularization

s1 = [λ21I + T (XT
2X2 − λ21I)]−1TXT

2 x1, (23)

s2 = [λ22I + T (XT
1X1 − λ22I)]−1TXT

1 x2, (24)

where T is a smoothing operator, and λ1 and λ2 are two parameters controlling the
physical dimensionality and enabling fast convergence when inversion is implemented
iteratively. These two parameters can be chosen as λ1 = ‖XT

2X2‖2 and λ2 = ‖XT
1X1‖2

(Fomel, 2007).
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