
Application of principal component analysis in

weighted stacking of seismic dataa

aPublished in IEEE Geoscience and Remote Sensing Letters, 14, no. 8, 1213-1217, (2017)

Jianyong Xie∗, Wei Chen†, Dong Zhang∗, Shaohuan Zu∗, and Yangkang Chen‡

ABSTRACT

Optimal stacking of multiple datasets plays a significant role in many scientific
domains. The quality of stacking will affect the signal-to-noise ratio (SNR) and
amplitude fidelity of the stacked image. In seismic data processing, the similarity-
weighted stacking makes use of the local similarity between each trace and a
reference trace as the weight to stack the flattened prestack seismic data after
normal moveout (NMO) correction. The traditional reference trace is an approx-
imated zero-offset trace that is calculated from a direct arithmetic mean of the
data matrix along the spatial direction. However, in the case that the data matrix
contains abnormal mis-aligned trace, erratic and non-gaussian random noise, the
accuracy of the approximated zero-offset trace would be greatly affected, thereby
further influence the quality of stacking. We propose a novel weighted stack-
ing method that is based on principal component analysis (PCA). The principal
components of the data matrix, namely the useful signals, are extracted based
on a low-rank decomposition method by solving an optimization problem with
a low-rank constraint. The optimization problem is solved via a common sin-
gular value decomposition algorithm. The low-rank decomposition of the data
matrix will alleviate the influence of abnormal trace, erratic and non-gaussian
random noise, thus will be more robust than the traditional alternatives. We use
both synthetic and field data examples to show the successful performance of the
proposed approach.

INTRODUCTION

Stacking of multiple datasets to output a final smoothed data is a common research
subject in many scientific fields. The stacking can be viewed as the simplest form of
random noise attenuation for enhancing multi-dimensional remote sensing datasets
(Tian et al., 2014; Zhuang et al., 2015). In seismic data processing, stacking simply
means the summation of a collection of seismic traces from different records into a
single trace. The quality of stacking greatly affect the performance of many seismic
data processing tasks. It can be considered as the simplest way for improving the
SNR (Elad and Aharon, 2006; Candès et al., 2006) in prestack seismic data process-
ing. It can quickly obtain a meaningful post-stack seismic image without wavefield
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continuation. The three steps in the stacking process are normal moveout (NMO)
velocity analysis, NMO correction and trace summation.

The original weighted stacking used an SNR-based weighted stacking strategy to
minimize random noise. Schoenberger (1996) proposed a different weighted stacking
approach that can suppress the multiples effectively by solving a set of optimization
equations in order to determine the stacking weights. Neelamani et al. (2006) took
the signal structures into consideration and proposed a simultaneous stacking and
denoising approach (SAD). Based on the statistics theory, Trickett (2007) proposed
to use a maximum-likelihood estimator for weighted stacking by estimating the prob-
ability distribution of random noise. Tang (2007) calculated the stacking weights as
functions of angle and azimuth and proposed a selective stacking approach.

Li and Gao (2014) proposed a novel method for stacking seismic data in time-
frequency domain (Liu et al., 2016; Lin et al., 2015). Liu et al. (2009) proposed a
similarity-weighted stacking approach that designs the weights of each trace by calcu-
lating the local similarity between each trace and a reference trace, and the method
was demonstrated to be superior to the state-of-the-art weighted stacking approaches.
The reference trace in the traditional similarity-weighted stacking method is an ap-
proximated zero-offset trace directly calculated from the spatial arithmetic mean of
data matrix (Rubinstein et al., 2010). When the data matrix contains mis-aligned
trace, erratic and non-gaussian random noise, the spatial arithmetic mean of the data
matrix is of low fidelity to approximate the zero-offset trace. In this letter, we propose
a novel principal component analysis (PCA) (Farrell and Mersereau, 2005; Du and
Fowler, 2007) based weighted stacking method. Considering the complicated situa-
tions of field seismic data as mentioned above, we propose to extract the principal
components of seismic data to approximate a highly accurate zero-offset trace. The
principal components of the data matrix are extracted via solving an optimization
problem with low-rank constraint. A singular value decomposition can be used to ef-
ficiently solve the optimization problem and then the low-rank approximation of the
data matrix, which has a high SNR and is close to the ideal NMO-corrected common
midpoint (CMP) gather, can be easily obtained. The new stacking method is easy
to implement and can obtain significantly better stacked profile with cleaner geolog-
ical structures. We first use a simple synthetic example to show the principle and
then use a real pre-stack field data example to further demonstrate the tremendous
improvement over the traditional approaches.

METHOD

Equal-weight stacking

In order to enhance the SNR of the zero-offset trace, all traces in a prestack CMP
gather are summed. The traditional equal-weight stacking is the average of all traces
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in a prestack CMP gather.

ŝ(t) =
1

N

N∑
i=1

si(t), (1)

where t is time, si(t) denotes the ith trace. ŝ(t) is the stacked zero-offset trace, and
N is the number of traces.

Weighted stacking

However, the quality of each trace is different and each trace should contribute dif-
ferently to the final stacked trace. A better stacking approach is to weight each
trace before stacking based on certain criteria. The weighted stacking process can be
formulated as

ŝw(t) =
1∑N

i=1wi(t)

N∑
i=1

wi(t) · si(t) (2)

where wi(t) is the weight applied to trace i and time t in a CMP gather. ŝw(t) is the
stacked trace after weighting.

Different methods have been proposed to apply weights according to different
criteria. For example, the smart stacking proposed by Rashed (2008) is based on sign
difference between sample point and the alpha-trimmed mean to remove frequency
distortions. Neelamani et al. (2006) uses an iterative algorithm called leave me out
(LMO) to estimate noise variances from data. The desired signal is assumed to be flat
with constant amplitude across all the traces within a gather in the LMO method.

Similarity-weighted stacking

The similarity-weighted stacking method was proposed by Liu et al. (2009) to weight
each trace according to the time-variant local similarity between each trace and the
mean trace.

To implement the similarity-weighted stacking, we first apply the equal-weight
stack to the NMO-corrected CMP gather to obtain the reference trace. Then we
compute the local similarity (Chen et al., 2015) between the reference trace and the
NMO-corrected CMP gather and apply soft thresholding (Donoho, 1995) to all local
similarity values. Finally, we apply the weighted stack to the CMP gather using local
similarity based weights to get the final stacked trace. The local similarity based
weighting criteria is defined as:

wi(t) =

{
ηi(t)− ε, ηi > ε

0 ηi ≤ ε
, (3)

where ε is the threshold value, ηi(t) is the local similarity between ith prestack trace
and the reference trace:

ηi(t) = S(si(t), ŝ(t)). (4)
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where S(a, b) denotes the local similarity between traces a and b. ŝ(t) is the arithmetic
mean as introduced in (1). ε can be intelligently chosen by defining a percentage. The
percentage is used to preserve or reject the values during thresholding. For example,
a percentage of 10 means that we preserve 10% largest value of the local similarity
η. The result is not very sensitive to ε. We usually keep a 50% of largest η values to
obtain the stacking result.

Low-rank approximation of the data matrix

In the similarity-weighted stacking approaches (2)-(4), ŝ(t) = 1
N

∑N
i=1 si(t) is not

an appropriate zero-offset approximation. The spatial arithmetic mean of the data
matrix is the true zero-offset trace only if the random noise is statistically white, and
all traces after NMO correction are aligned well. Furthermore, no existing abnormal
traces should exist in the data matrix. These requirements are seldom met due to
the extremely complicated features of real seismic data and seismic data are always
contaminated with different types of noise, e.g. erratic noise and colored noise.

A better way for calculating the approximation of the zero-offset trace is to calcu-
late the spatial arithmetic mean of a low-rank approximated data matrix using prin-
cipal component analysis (PCA). PCA is an important tool for multivariate analysis
in statistics. The idea is to reduce the dimensionality of a data set while preserving
as much variability of data variables as possible (Jolliffe, 2010).

Suppose the data matrix D is composed of signal component S, random noise N,
erratic noise E, and mis-aligned data components M:

D = S + N + E + M. (5)

For seismic stacking in this paper, D is simply a common midpoint gather. If we
assume the error components N+E+M are composed of small random perturbations,
an optimal estimate of S can be acquired via the following optimization problem:

min ‖ N + E + M ‖2F ,
s.t. rank(S) = k, D = S + N + E + M,

(6)

where k denotes the rank constraint applied to the target signal components. The
problem can be efficiently solved via singular value decomposition (SVD). The ob-
served data matrix D can be decomposed into a group of eigen-images via the SVD.
The low-rank component S can be described with a few eigen-images that are associ-
ated with the largest singular values. The other noise items N, E, M, however, will
have energy spread over all the eigen-images.

Weighted stacking based on PCA

After the low-rank approximation of the data matrix Ŝ is obtained, a better zero-
offset reference trace can be obtained via calculating the arithmetic mean of the data
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matrix along the spatial direction:

ŝlr(t) = Ŝa, (7)

where a is an averaging column vector [ 1
N
, 1
N
, · · · , 1

N
]T1×N . Here [·] denotes the trans-

pose of the input matrix/vector. Substituting ŝ(t) in (4) with ŝlr(t), we can obtain a
new weighting criteria:

ωi(t) =

{
βi(t)− ε, βi > ε

0 βi ≤ ε
, (8)

where βi(t) is the local similarity between ith prestack trace and the low-rank ap-
proximated reference trace:

βi(t) = S(si(t), ŝlr(t)). (9)

Inserting the new weighting criteria, as shown in (8), into (2), we obtain the new PCA-
based weighted stacking approach. The detailed algorithm workflow of the proposed
weighted stacking approach can be expressed as:

1. Calculate the SVD of data matrix D:

[U,Σ,V] = SVD(D) (10)

2. Calculate the low-rank approximated singular value matrix by selecting the k
largest diagonal elements and setting others zero:

Σ̂ = Σ(1 : k, 1 : k) (11)

3. Calculate the low-rank approximated data matrix

Ŝ = UΣ̂VT . (12)

4. Calculate the arithmetic mean of the low-rank approximated data matrix ac-
cording to (7).

5. Calculate the local similarity between each trace and the low-rank approximated
zero-offset reference trace.

6. Calculate the PCA-based weighting function wi(t) according to (8).

7. Stack the CMP gather using the calculated weighting function according to (2).

For more complicated cases, the nonlinear equivalent of standard PCA (NPCA) can be
used to potentially obtain even better performance. The NPCA reduces the observed
variables to a number of uncorrelated principal components. The most important
advantages of nonlinear over linear PCA are that it incorporates nominal and ordinal
variables, and that it can handle and discover nonlinear relationships between vari-
ables, which may indicates the the traces may not need to be exactly flattened before
stacking.
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EXAMPLES

We first use a simple synthetic example to show the logic of the proposed approach.
Fig. 1 shows an NMO-corrected CMP gather on the left. It is salient that there is an
abnormal trace in the CMP gather. Besides, there is a significant amount of random
noise in the data. For this data set, it is not plausible to directly take the arithmetic
mean of the traces to stand for the zero-offset trace, since the abnormal trace will
greatly degrade the fidelity of the equal-weight stacked trace and the non-gaussian
random noise will cause a lot of residual noise in the stacked trace. However, the
low-rank approximated data matrix (as shown in the right subfigure in Fig. 1) that
alleviates the influence of the abnormal trace and non-Gaussian random noise is much
cleaner and close to the ideal NMO-corrected CMP gather.

The second to fifth subfigures (from left to right) in Fig. 2 show the stacked traces
using traditional stacking, smart stacking (Rashed, 2008), SNR stacking (Neelamani
et al., 2006) and similarity weighted stacking (Liu et al., 2009), respectively. Despite
the existence of the abnormal first trace, the similarity-weighted trace obtains the
best stacking performance as shown in Liu et al. (2009). We zoom in the last figure
in Fig. 2 and show it in the middle of Fig. 3. In addition, we show the clean signal
on the left of Fig. 3 and the stacked signal using the proposed method on the right
of Fig. 3. It is obvious that the abnormal trace makes the stacked trace based on
local similarity deviate from the true signal a lot around 0.175s, as pointed out by the
arrow. The proposed method, however, obtains a successful stacked signal. The SNR
of the similarity based method is 8.85 dB and the SNR of the PCA based method is
9.38 dB. We can conclude from the synthetic example that the proposed method can
not only help improve the SNR, but also can help better preserve the amplitude of
the useful signals.

The number of stacking signals may be large, e.g., more than 50. The number of
abnormal traces can also be larger than 1. Actually, when the number of stacking
signals becomes larger, the method becomes more appealing, since more signals also
implies more complicated signal features, more noise, and more abnormal traces.
The superiority of the proposed method will become more practically beneficial when
the data size and structure becomes more complicated, e.g., the field data example
discussed next.

We then apply the proposed method to a field data example, as shown in Fig. 4.
The second field data is a 2-D line from the Blake Outer Ridge area offshore Florida
and Georgia. Fig. 5 shows a demonstration of flattening one CMP gather (Fig. 5a)
using NMO velocity analysis (Fig. 5b) and NMO correction (Fig. 5c). The white line
overlaying Fig. 5b denotes the automatically picked NMO velocity used for flattening
the gather. Fig. 6 shows the weight calculated using the proposed method (equations
8 and 9). The stacked seismic images using different methods are shown in Fig. 7.

As shown in Fig. 7, the three sections (a),(b),(c) correspond to the stacked im-
ages of this field data example using three different methods: equal-weight stacking,
similarity-weighted stacking, and PCA-based stacking. The proposed approach ob-
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tains a more satisfying stacking performance, as shown in Fig. 7c. The amplitude
of seismic reflections becomes obviously stronger using the proposed approach (Fig.
7c). Fig. 8 shows zoomed sections that correspond to the pink frame boxes shown in
Fig. 7. It further confirms that the proposed method can help obtain cleaner stacked
image and better preserve the amplitude of the useful signals. In order to quanti-
tatively compare the stacking performance of different methods, we plot the average
spectrum (1D FFT along the time axis) of all the traces of the stacked images for
three methods and show them in Fig. 9. The black line denotes the average spectrum
of equal-weight stacking method. The green line corresponds to similarity stacking
method. The red line corresponds to the proposed approach. It is very obvious that
the energy of the proposed algorithm is stronger than that of the equal-weight stack-
ing method and similarity stacking method, indicating that the proposed algorithm
helps best preserve the amplitude of seismic reflection events. We also calculate the
maximum frequency energy (MFE), i.e., the maximum amplitude of the average fre-
quency spectrum, for three methods. MFE is 231.83 for the equal-weight method,
415.24 for the similarity method, and 504.77 for the proposed method. The proposed
method improve the equal-weight method by 117.33% and improve the similarity
method by 21.56% in terms of MFE.

It is worth mentioning that there is no 100% reliable way to compare the stack-
ing performance of real seismic data in the literature, since there is no ground truth
for real data. When judging the stacking performance by human observation, we
care about the ”large amplitude/energy” of those key reflectors since stronger am-
plitude/energy makes us see clearer the reflectors, as highlighted by the ellipses and
arrows in Fig. 8. When interpreting the seismic profiles, the No 1 principle is to
detect those critical reflectors, the No 2 principle is the coherency of those reflectors
since it is related to the horizon tracking in seismic interpretation. The ”accuracy” or
”fidelity” of amplitude is not very important in interpretation of time-migrated seis-
mic images. However, the modern seismic imaging techniques such as true-amplitude
least-squares migration (Chen et al., 2017), seek to obtain true-amplitude subsurface
image where the amplitude correctness is of vital importance. However, this is beyond
the scope of the letter For judging the stacking performance of field data, we highly
recommend to judge by ”observing” and ”interpreting”.

CONCLUSION

The similarity-weighted stacking approach can obtain a much improved stacking re-
sult than the equal-weight stacking considering the increased SNR, however, will still
cause energy damage when an inappropriate reference trace is used to calculate the
similarity based weights. We proposed a new weighted stacking method that is based
on principal component analysis (PCA). The principal of the method is to prepare an
ideal NMO-corrected data matrix via low-rank approximation. The low-rank approxi-
mation, or in other words the principal components, is obtained via solving a low-rank
constrained optimization problem via singular value decomposition (SVD). The pro-
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Figure 1: Left: Original NMO-corrected data. Right: Low-rank approximated data
matrix.
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Figure 2: Rashed08
, SNR stack (Neelamani et al., 2006), and similarity stack (Liu et al., 2009).]From
left to right: NMO-corrected data, conventional stack, smart stack (Rashed, 2008),

SNR stack (Neelamani et al., 2006), and similarity stack (Liu et al., 2009).



10

Figure 3: From left to right: true signal, stacked signal using the similarity-weighted
stacking (SNR=8.85 dB), and stacked signal based on the PCA method SNR=9.38
dB.
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Figure 4: Field data example.
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Figure 5: Demonstration of NMO correction for the field data example.

posed PCA-based stacking method can help alleviate the negative effects caused from
abnormal trace, erratic and non-gaussian random noise existing in the data matrix,
and thus is robust in field data processing. The proposed approach is tested via a
synthetic CMP gather and a field data example, which shows very promising per-
formance. Future research topics include substituting the current PCA framework
with more sophisticated algorithms to make the obtained components statistically
as independent as possible, such as Independent Component Analysis (ICA), where
higher-order statistics rather than second-order moments are used to determine basic
vectors and is proven to be stronger than PCA (Hyvärinen et al., 2001).
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Figure 6: PCA-based weights for each time and space indices.



14

(a)

(b)

(c)

Figure 7: (a) Stacked result using equal-weight method. (b) Stacked result using local
similarity based weight. (c) Stacked result using the proposed method.
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(a)

(b)

(c)

Figure 8: Zoomed sections from Fig. 7. (a) Stacked result using equal-weight method.
(b) Stacked result using local similarity based weight. (c) Stacked result using the
proposed method.
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Proposed

Similarity	stacking

Equal-weight	stacking

Figure 9: Comparisons of the average spectrum of all the traces. The black line
denotes the average spectrum of equal-weight stacking method. The green line cor-
responds to similarity stacking method. The red line corresponds to the proposed
approach. Note that energy of the proposed algorithm is obviously stronger than the
other two methods.
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