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ABSTRACT

The empirical mode decomposition aims to decompose the input signal into a
small number of components named intrinsic mode functions with slowly varying
amplitudes and frequencies. In spite of its simplicity and usefulness, however, the
empirical mode decomposition lack solid mathematical foundation. In this paper,
we describe a method to extract the intrinsic mode functions of the input signal
using non-stationary Prony method. The proposed method captures the philoso-
phy of the empirical mode decomposition, but use a different method to compute
the intrinsic mode functions. Having the intrinsic mode functions obtained, we
then compute the spectrum of the input signal using Hilbert transform. Synthetic
and field data validate the proposed method can correctly compute the spectrum
of the input signal, and could be used in seismic data analysis to facilitate inter-
pretation.

INTRODUCTION

Time-frequency analysis maps an 1D time signal into 2D time and frequency domains,
which can capture the non-stationary character of seismic data. Time-frequency
analysis is a fundamental tool for seismic data analysis and geological interpretation
(Castagna et al., 2003; Reine et al., 2009; Chen et al., 2014; Liu et al., 2016). Conven-
tional time-frequency methods, such as short time Fourier transform (Cohen, 1989),
wavelet transform (Mallat, 1989) and S-transform (Stockwell et al., 1996) are under
the control of Heisenberg/Gabor uncertainty principle, which states that we cannot
have the energy arbitrarily located in both time and frequency domains (Mallat,
2009). Moreover, short time Fourier transform, wavelet transform and S-transform
are using a windowing process, which often brings smearing and leakage (Tary et al.,
2014). Therefore spurious frequencies are often generated, which will ”color” the
real time-frequency map and affects the interpretation. In recent years, many new
methods were proposed such as matching pursuit (Mallat and Zhang, 1993), basis
pursuit (Chen et al., 1998), empirical mode decomposition (Huang et al., 1998; Chen
and Fomel, 2015), the synchrosqueezing wavelet transform (Daubechies et al., 2011)
and its variants such as the synchrosqueezing short time Fourier transform (Oberlin
et al., 2014), the synchrosqueezing S-transform (Huang et al., 2015). The matching
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pursuit and basis pursuit methods represent the energies of the input signal by the
energies of atoms found using different methods, which prevents smearing and leak-
age, creating highly localized time-frequency decompositions. The efficiency of these
two methods depend on the predefined dictionary (Tary et al., 2014). The empirical
mode decomposition method decomposes a signal into symmetric, narrow-band wave-
forms named intrinsic mode functions to compress artificial spectra caused by sudden
changes and to therefore improve the time-frequency resolution (Han and van der
Baan, 2013). However, the empirical mode decomposition also suffers from mode
mixing and splitting problems. In order to solve the above problems, alternative
methods were developed based on empirical mode decomposition: ensemble empiri-
cal mode decomposition(Wu and Huang, 2009), complete ensemble empirical mode
decomposition (Torres et al., 2011). However, these two methods, like the empirical
mode decomposition, are still ”empirical” because their sketchy mathematical justi-
fications. The synchrosqueezing wavelet transform (Daubechies et al., 2011) and its
variants capture the philosophy of empirical mode decomposition, but use a different
method to compute the intrinsic mode functions providing a rigorous mathematical
framework.

Similar to the Fourier transform, the Prony method (Prony, 1795) decomposes a
signal into a series of damped exponentials or sinusoids in a data-driven manner, which
allows for the estimation of frequencies, amplitudes, phases and damping components
of a signal. Fomel (2013) proposed the non-stationary Prony method (NPM) based
on regularized non-stationary auto-regression. The NPM decomposes a signal into
intrinsic mode functions with controlled smoothness of amplitudes and frequencies
like the empirical mode decomposition does, but uses NPM instead. Unlike Fourier
transform, the coefficients of the extracted intrinsic mode functions for the Prony
method do not clearly define the energy distribution for the input signal in the time-
frequency domain. Therefore, the NPM used by Fomel does not clearly define a "real”
time-frequency map but a ”time-component” map. In this paper, we couple the NPM
(Fomel, 2013) and the Hilbert transform to give a time-frequency decomposition. The
proposed method has a rigorous mathematical framework. Furthermore, synthetic
and real data tests confirm that the intrinsic mode functions derived by the proposed
method are more smooth with respect to the amplitudes and frequencies than the
intrinsic mode functions of ensemble empirical mode decomposition (Wu and Huang,
2009). Synthetic and real data tests also confirm that the proposed method has a
higher time-frequency resolution than the ensemble empirical mode decomposition.
The proposed method can be used to facilitate seismic interpretation.

THEORY

We give a short description of the theories for empirical mode decomposition, Prony,
and NPM. For details of the Prony and NPM see Appendix.
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Empirical Mode Decomposition

Empirical mode decomposition is a data-driven method, which is a powerful tool
for non-stationary signal analysis (Huang et al., 1998). This method decomposes a
signal into slowly varying time dependent amplitudes and phases components named
intrinsic mode functions. The time-frequency decomposition for the input signal is
attributed to the Hilbert transform of the intrinsic mode functions extracted by the
sifting process(Han and van der Baan, 2013). If s(¢) is the input signal, the empirical
mode decomposition can be written as:

K

s(t) =) si(t) =

]~

Ag(t) cos(k(t)), (1)

where A (t) measures amplitude modulation, and ¢ (¢) measures phase oscillation.
Each si(t) has a narrow-band waveform and an instantaneous frequency that is
smooth and positive. The empirical mode decomposition is powerful, but its mathe-
matical theory is sketchy.

Prony Method

Prony method extracts damped complex exponential functions (or sinusoids) from
a given signal by solving a set of linear equations (Prony, 1795; Lobos et al., 2003;
Peter and Plonka, 2013; Mitrofanov and Priimenko, 2015). The Prony method al-
lows for estimation of frequencies, amplitudes and phases of a signal (For details see
Appendix). Assume we want to solve the problem:

M
k=1

if let hy = Agel®, 2, = el @A we derive the concise form

M
x[n] = Z hyzp ' (3)
k=1
The above M equations can be written in a matrix form:
2? 29 2y hi x[1]
1 1 1
2] Zy o Zy ho x[2]
= : . (4)
R R v hos x[M]
The above 2z, k= 1,2,--- , M of equation 4 can be computed by solving a polynomial
of the form: .

P(z) = [ [(z = =) ()
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equation 5 can also be written in a form:
P(2) = ap?™ + a2 + -+ an 1z + aur (6)

The coefficients a; of the polynomial can be computed by solving the following equa-

tion:
M

Z apmxin —m| = 0. (7)
m=0
We use the method proposed by Toh and Trefethen (1994) to compute the roots z
of equation 6. If the roots are solved, the h; can be computed using equation 3.
Finally, the components are computed based on the equation below(For details see
Appendix):
crln] = hp2y =z k=1,2,- - M. (8)

Non-stationary Prony method

Equation 7 can be written as:

> amaln —m] = xn]. (9)

If the a,, in equation 9 are time dependent, then we have:

am[n]xz[n —m] = z[n), (10)

m=1

which is an under-determined linear system. There are many methods for solving
under-determined linear system, such as Tikhonov method (Tikhonov, 1963). In this
paper, we apply shaping regularization (Fomel, 2007, 2009) to regularize the under-
determined linear system, and obtain (for details see Appendix):

a=Fn, (11)

where & is a vector composed of a,,[n], the elements of vector n are n;[n] = S[x}[n]z[n]],
where z;[n] = z[n — i], xf[n] stands for the complex conjugate of z;[n| and S is the
shaping operator. The elements of matrix F are:

Fyj[n] = 08 + S[a[n]z;[n] — 0?03, (12)

where o is the regularization parameter. Solving equation 11, we obtain the coeffi-
cients vector a,,[n] and form a polynomial below:

P(z) = 2™ +ai[n]2™ ™t + -+ ann). (13)
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For the roots computation Z,[n],m = 1,2,-, M of the above polynomial, we use the
method proposed by Toh and Trefethen (1994). The instantaneous frequency of each
different component is derived from the following equation:

folr) = Jang (222 (14

From the instantaneous frequency, we compute the local phase according to the fol-
lowing equation:

O[] =21 fnlk] AL (15)

Solving the following equation using regularized non-stationary regression method
(Fomel, 2013):

Ap[n]e " = ") (16)

Finally the narrow-band intrinsic mode functions ¢,,[n] are computed based on equa-
tion 16

EXAMPLES

We use synthetic signals and real field data to test the proposed method.

Benchmark examples

We use a simple synthetic signal to test the proposed method. Figure 1 is a syn-
thetic signal from Hou and Shi (2013). The three components of the signal are shown
in Figure 2. Figure 3 and Figure 4 show the intrinsic mode functions extracted re-
spectively by ensemble empirical mode decomposition and NPM methods. From the
figures, we see that the NPM method accurately identifies the three components that
the signal has. The intrinsic mode functions derived by the NPM are more smooth
with respect to amplitudes and frequencies compared with the intrinsic mode func-
tions obtained by ensemble empirical mode decomposition. For ensemble empirical
mode decomposition, we repeat the empirical mode decomposition 25 times with dif-
ferent level of noises to generate the ensemble empirical mode decomposition results.
The time-frequency distributions of the input signal are the Hilbert transform of the
intrinsic mode functions. Figure 5a, 5b and 5c¢ are respectively the time-frequency
distributions using local attribute (Liu et al., 2011), ensemble empirical mode decom-
position (Wu and Huang, 2009) and the proposed method for the synthetic signal
of Figure 1. Figure 6 is an another synthetic signal. Figure 7a, 7b and 7c are re-
spectively the time-frequency maps using local attribute (Liu et al., 2011), ensemble
empirical mode decomposition (Wu and Huang, 2009) and the proposed method.
From the figures, we see that the energies compactly spread over the instantaneous
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frequencies for the ensemble empirical mode decomposition. However, the energies
are not steadily distributed for the ensemble empirical mode decomposition. The pro-
posed method provides a steady and compact energies distribution, which sharpen
the time-frequency distribution.
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Figure 1: Synthetic signal.
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Figure 2: Components of the synthetic signal of Figure 1 .

Field examples

Figure 8 is a seismic trace from marine survey. Figure 9a, 9b and 9c are the time-
frequency distributions of the trace using local attribute (Liu et al., 2011), ensemble
empirical mode decomposition and the proposed method. We can see that the energies
distributions for ensemble empirical mode decomposition and the proposed method
are much like each other. Both the ensemble empirical mode decomposition and
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Figure 3: Components of the synthetic signal of Figure 1 using ensemble empirical
mode decomposition.
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Figure 4: Components of the synthetic signal of Figure 1 using NPM.
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Figure 5: (a) Time-frequency map for synthetic signal of Figure 1 using local attribute.
(b) Time-frequency map for synthetic signal of Figure 1 using ensemble empirical
mode decomposition. (c¢) Time-frequency map for synthetic signal of Figure 1 using
the proposed method.
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Figure 6: Synthetic signal.
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Figure 7: (a) Time-frequency map for synthetic signal of Figure 6 using local attribute.
(b) Time-frequency map for synthetic signal of Figure 6 using ensemble empirical
mode decomposition. (c¢) Time-frequency map for synthetic signal of Figure 6 using
the proposed method.
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the proposed method using the Hilbert transform of the intrinsic mode functions to
represent the time-frequency distributions for the input signal. The results confirm
that they both reveal the time-frequency character of the input signal.
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Figure 8: Seismic trace from marine survey.

Low-frequency anomalies are often attributed to abnormally high attenuation in
gas-filled reservoirs and can be used as a hydrocarbon indicator (Castagna et al.,
2003). The mechanisms of low-frequency anomalies associated with hydrocarbon
reservoirs are not clearly understood (Ebrom, 2004; Kazemeini et al., 2009). Figure 10
is a 2D field seismic data. Figure 11a and 11b, 1lc and 11d, 1le and 11f are the
30Hz and 60Hz constant frequency slices using local attribute, ensemble empirical
mode decomposition and the proposed method. From the above figures, we see that
there is a low frequency anomaly in the upper left part of the data section indicated
by the text boxes ”Gas?” for the ensemble empirical mode decomposition and the
proposed methods, which may correspond to gas presentation.

Figure 12a, 12b and 12c¢ are the full time-frequency cubes computed respectively
using local attribute, ensemble empirical mode decomposition and the proposed meth-
ods. The main panels show constant frequency slices. The right hand side panels show
the time-frequency maps of the 150th trace. The top panels show the time-frequency
maps of 0.6s time-depth signal. From the right and top side panels we see that there
are a lot of noise in the high frequency domain for the ensemble empirical mode
decomposition and local attribute methods compared with the proposed method.

CONCLUSION

We proposed to compute the time-frequency map of an input signal based on NPM
coupled with Hilbert spectral analysis. The proposed method is an empirical mode
decomposition-like method, but using NPM to compute its intrinsic mode functions.
Compared with the Fourier transform, the proposed method is data-driven and needs
much less base functions to approximate the original signal. Since the NPM results
an under-determined linear system, we use shaping regularization to regularize it.
The regularization makes the intrinsic mode functions more smooth with respect to
the amplitudes and frequencies compared with the intrinsic mode functions of the
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Figure 9: (a) Time-frequency map for synthetic signal of Figure 8 using local attribute.
(b) Time-frequency map for synthetic signal of Figure 8 using ensemble empirical
mode decomposition. (c¢) Time-frequency map for synthetic signal of Figure 8 using
the proposed method.
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Figure 10: 2D seismic data section.

empirical mode decomposition. There are many time-frequency methods, which one
is the best? This is a difficult question to answer. Methods are good for some type
signals, maybe not good for other type signals.

Yung-Huang et al. (2014) pointed out that the complexity of empirical mode de-
composition/ensemble empirical mode decomposition is 41 * Nz * Ng * n(logyn) =
O(nlogn) , where n is the data length and the parameters Ng and Ng are the en-
semble and sifting numbers respectively. For the non-stationary Prony method, the
computation complexity is mainly attributed to the polynomial zero-finding. We used
the pseudo-zeros method to compute the pseudo-spectra of the associated balanced
companion matrix (Toh and Trefethen, 1994), which requires approximate N3 works,
where N is the polynomial degree number. Therefore, the total computation com-
plexity is N* s« £ = n « N? where n is the data length. In this paper, we choose
N = 5, and therefore the total computation complexity is approximate n*5% = O(n).
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Figure 11: (a) 30Hz slice time-frequency map using local attribute method. (b) 60Hz
slice time-frequency map using local attribute method. (c) 30Hz slice time-frequency
map using ensemble empirical mode decomposition method. (d) 60Hz slice time-
frequency map using ensemble empirical mode decomposition method. (e) 30Hz slice
time-frequency map of the proposed method. (f) 60Hz slice time-frequency map of
the proposed method.
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APPENDIX A: PRONY METHOD

Prony method can extract damped complex exponential signals from a given data
by solving a set of linear equations (Prony, 1795; Lobos et al., 2003; Peter and
Plonka, 2013; Mitrofanov and Priimenko, 2015). Assume the N complex data samples
x[1], z[2], - - - [ N], we approximate the data by M exponential functions:

M
.Z'[TL] ~ ZAAke(oszrjwk)(1171)A1‘/+j¢>;€7 (17)
k=1

where Ay is the amplitude, At is the sampling period, a4, is the damping factor, wy, is
the angular frequency, ¢y is the initial phase. If we let hj, = Ape?%, 2, = el@Tiwr)AL
we then derive the concise form below:

M
x[n] ~ Z .zt (18)
k=1

The approximation problem above can be solved based on the error minimization:

2

N N M
min Z le[n]|* = min Z x[n| — Z 2t (19)
n=1 n=1 k=1

This turns to be a nonlinear problem. It can be solved using Prony method that
utilizes linear equation solutions. If there are as many data samples as parameters of
the approximation problem, the above M equations 18 can be expressed:

x[n] = Z hyzp ' (20)

20 can be written in a matrix form as below:

2? 29 2%, hy x[1]
21 23 2}, hy || =[2] (1)
LM M A1t hos x[M]

Prony proposed to define the polynomial that has the above 2z, k = 1,2,--- , M as
its roots (Prony, 1795):

M
P(z) =[]z — ). (22)
Equation 22 can be rewritten in the form below:

P(2) = apz™ + a2 -+ a1z +ay. (23)
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Shifting the index on equation 20 from n to n —m , and multiplying by parameter
a[m], then we derive:

M M M
amx[n —m| = Z hyzp M1 Z alm]z . (24)
m=0 k=1 m=0
Notice z,,k =1,2,---, M are roots of equation 23, then equation 24 be written as:
M
amzin —m| = 0. (25)
m=0

Solving equation 25 for the polynomial coefficients. In subsequent steps we compute
the frequencies, damping factors and the phases according to Algorithm 1. After all
the parameters are computed, we then compute the components of the input signal.
For details see Algorithm 1 as follows:
ALGORITHM 1: PRONY METHOD()

1 Find coefficients:

2 ap,k=1,2,--- ,MeZamm[n—m]:

m=0
M
3 Find roots: 2z, k=1,2,--- ,MeZasz_m:O,
m=0
4  Compute frequencies:
2k
) k=1,2,--- , M+ R —_ k=1,2,--- M.
Wk, ) ) {arg((k—]_>At>}7 ) “y ’
6 Compute:
7 Akeak(n—l)At+j¢k7k =1,2,--- , M +
8 x[n] = S0, Apelortion)(n=DAt+jor
9 Compute components:
10 Ake(ak""jwk)(n_l)At'f‘ijk‘
11

APPENDIX B: NON-STATIONARY PRONY METHOD
AND SHAPING REGULARIZATION

The equation 25 can be rewritten as

M
amx[n —m| = x[n]. (26)
m=1
If the a,,,m = 1,2,--- , M in equation 26 are time dependent, then we have
M
ap[n]xz[n —m] = z[n), (27)

m=1
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which is under-determined. There many methods for the solving under-determined
linear system. For example, Tikhonov (1963) used the regularization method for mak-
ing the under-determined problem well-posed by adding constraints on the estimated
model.

Shaping regularization

Fomel (2007, 2009) introduces shaping regularization in inversion problem, which
regularizes the under-determined linear system by mapping the model to the space
of acceptable models. Consider a linear system given as Fx = b, where F is the
forward-modeling map, x is the model vector, and b is the data vector. Tikhonov reg-
ularization method amounts to minimize the least square problem bellow (Tikhonov,
1963):

min|Fx — b||* + €| Dx||?, (28)

where D is the regularization operator, and ¢ is a scalar parameter. The solution for
equation 28 is:
%= (F'F + &D'D) " FTb, (29)

Where % is the least square approximated of x, FT is the adjoint operator. If the
forward operator F is simply the identity operator, the solution of equation 29 is the
form below:

%= (I+¢D7D) ' b, (30)
which can be viewed as a smoothing process. If we let:
S—(1+¢D'D) 7, (31)
or
eD'D =S -1 (32)

Substituting equation 32 into equation 29 yields a solution by shaping regulariza-
tion:

$=(FTF+S7' 1) 'F'b = [I+S (F'F —1)] " SF'b. (33)

The forward operator F may has physical units that require scaling. Introducing
scaling A into F, equation 33 be written as:

% = [\ +S (F'F — X°T)] ' SF”b. (34)
If S = HH” with square and invertible H. Equation 34 can be written as:
% =H[NI+H" (F'F - X’I)H]  H"F’b. (35)

The conjugate gradient algorithm can be used for the solution of the equation 35.
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Non-stationary Prony method

Equation 27 can be written as a matrix form:

D, (t)xn(t) ~ d(t), (36)

m=1

where d(t) = x(t), x(t) = x(t — mAt) is the time shift of the input signal x(¥)
and &,,(t) is the time-dependant coefficients. We solve the under-determined linear
system by using the shaping regularization method. The solution is the form below:

a=F1, (37)
where a is a vector of a(t), the elements of vector 7 is:

mi(t) =S [x;(1)d(t)], (38)

7

the elements of the matrix F is:
Fij = 06 + S[X; (t)x;(t) — 0264 (39)

where o is the regularization parameter, S is a shaping operator, and x}(t) stands for
the complex conjugate of x;(t). We can use the conjugate gradient method to find
the solution of the linear system. The NPM (Fomel, 2013) can be summarized as
follows:
ALGORITHM 2: NON-STATIONARY PRONY METHOD()
1 Find time dependent coefficients using auto-regression method:
M

2 agln) k=1, M+« > ay[n]an —m] = 0.

m=0
3 Find time dependent roots

4 Zn)k=1,2,- M<—Zam m— .
5 Compute time dependent frequen(:les
6 wglnl,k=1,-- Me%{arg(zz[t]>} k=1,---,M.
7 Computel the time dependent phase:
8 = dln]At
9 Compute: components using at;}o—regression method
10 épn),m=1,---Mx[n]~ > Ay e]¢m[”] = Zc
m=1

After we decompose the input signal into narrow-band components, we compute
the time-frequency distribution of the input signal using the Hilbert transform of the
intrinsic mode functions.
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