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ABSTRACT

We introduce a novel technique for seismic wave extrapolation in time. The
technique involves cascading a Fourier Transform operator and a finite difference
operator to form a chain operator: Fourier Finite Differences (FFD). We derive
the FFD operator from a pseudo-analytical solution of the acoustic wave equa-
tion. 2-D synthetic examples demonstrate that the FFD operator can have high
accuracy and stability in complex velocity media. Applying the FFD method
to the anisotropic case overcomes some disadvantages of other methods, such as
the coupling of qP-waves and qSV-waves. The FFD method can be applied to
enhance accuracy and stability of seismic imaging by reverse-time migration.

INTRODUCTION

The wavefield extrapolation problem refers to advancement of a wavefield through
space or time. Both extrapolation in depth and extrapolation in time can be used
in seismic modeling and seismic migration. Reverse time migration, or RTM (Baysal
et al., 1983; McMechan, 1983; Whitmore, 1983; Levin, 1984), involves wave extrapo-
lation forward and backward in time. RTM is useful for accurate imaging in complex
areas and is drawing more and more attention as the most powerful depth-imaging
method (Yoon et al., 2004; Symes, 2007; Fletcher et al., 2009; Fowler et al., 2010).

Reverse-time migration can correctly handle complex velocity models without dip
limitations on the image. However, it has large memory requirements and needs a
significant amount of computation. The most popular and straightforward way to
implement reverse-time migration is the method of explicit finite differences, which
is only conditionally stable because of the limit on time-step size. Finite-difference
methods also suffer from numerical dispersion problems, which can be overcome either
by decreasing the time step or by high-order schemes (Wu et al., 1996; Liu and Sen,
2009). Several alternative algorithms have been developed for seismic wave extrapola-
tion in variable velocity media. Soubaras and Zhang (2008) introduced an algorithm
based on a high-order differential operator, which allows a large extrapolation time
step by solving a coefficient optimization problem. Zhang and Zhang (2009) proposed
one-step extrapolation method by introducing a square-root operator. This method
can formulate the two-way wave equation as a first-order partial differential equation
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in time similar to the one-way wave equation. Etgen and Brandsberg-Dahl (2009)
modified the Fourier Transform of the Laplacian operator to compensate exactly for
the error resulting from the second-order time marching scheme used in conventional
pseudo spectral methods (Reshef et al., 1988a). Fowler et al. (2010) provided an
accurate VTI P-wave modeling method with coupled second-order pseudo-acoustic
equations. Pestana and Stoffa (2010) presented an application of Rapid Expansion
Method (REM) (Tal-Ezer et al., 1987) for forward modeling with one-step time evo-
lution algorithm and RTM with recursive time stepping algorithm.

In this paper, we present a new wave extrapolator derived from the pseudo-
analytical approach of Etgen and Brandsberg-Dahl (2009). Our method combines
FFT and finite differences. We call it the Fourier Finite Difference method because
it is analogous to the concept introduced previously for one-way wave extrapolation
by Ristow and Ruhl (1994).

As a chain operator of Fast Fourier Transform and Finite Difference operators,
the proposed extrapolator can be as accurate as the parameter interpolation approach
employed by Etgen and Brandsberg-Dahl (2009) but at a cost of only one Fast Fourier
Transform (FFT) and inverse Fast Fourier Transform (IFFT) operation. The advan-
tages of the FFD operator are even more apparent in the anisotropic case: no need for
several interpolations for different parameters with the corresponding computational
burden of several FFTs and IFFTs. In addition, the operator can overcome the cou-
pling of qP-waves and qSV-waves (Zhang et al., 2009). We demonstrate the method
on synthetic examples and propose to incorporate FFD into reverse-time migration
in order to enhance migration accuracy and stability.

THEORY

The acoustic wave equation is widely used in forward seismic modeling and reverse-
time migration (Bednar, 2005; Etgen et al., 2009):

∂2p

∂t2
= v(x)2∇2p , (1)

where p(x, t) is the seismic pressure wavefield, and v(x) is the propagation velocity.
Assuming a constant velocity v, after Fourier transform in space, we can get the
following explicit expression:

d2p̂

dt2
= −v2|k|2p̂ , (2)

where

p̂(k, t) =

∫ +∞

−∞
p(x, t)eik·xdx . (3)

Equation 2 has the following solution:

p̂(k, t+ ∆t) = e±i|k|v∆tp̂(k, t) . (4)
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A second-order time-marching scheme and the inverse Fourier transform lead to the
well-known expression (Etgen, 1989; Soubaras and Zhang, 2008):

p(x, t+ ∆t) + p(x, t−∆t)− 2p(x, t) =

2

∫ +∞

−∞
p̂(k, t)(cos(|k|v∆t)− 1)e−ik·xdk . (5)

Equation 5 provides an elegant and efficient solution in the case of a constant-
velocity medium with the aid of FFT. In the case of a variable-velocity medium, equa-
tion 5 can provide an approximation by replacing v with v(x). However, FFT can
no longer be applied directly for the inverse Fourier transform from the wavenumber
domain back to the space domain. To overcome this problem, Etgen and Brandsberg-
Dahl (2009) propose a velocity interpolation method. They present an implementa-
tion for isotropic, VTI (vertical transversely isotropic) and TTI (tilted transversely
isotropic) media. In the isotropic case, two FFTs can be sufficient. For anisotropic
media, more than one velocity parameter must be used. Therefore, it is necessary
to perform velocity interpolation by combining different parameters and computing
the corresponding forward and inverse FFTs for each of the velocity parameters, thus
increasing the computational burden. Other FFT-based solutions include the op-
timized separable approximation or OSA (Song, 2001; Liu et al., 2009; Zhang and
Zhang, 2009; Du et al., 2010) and the lowrank approximation (Fomel et al., 2010).

We propose an alternative approach. First, we adopt the following form of the
right-hand side of equation 5 in the variable velocity case:

2 [cos(v(x)|k|∆t)− 1] =

2 [cos(v0|k|∆t)− 1]

[
cos(v(x)|k|∆t)− 1

cos(v0|k|∆t)− 1

]
, (6)

where v0 is the reference velocity, such as the RMS (root-mean-square) velocity of the
medium. After that, we apply the following approximation:

cos(v(x)|k|∆t)− 1

cos(v0|k|∆t)− 1
≈ a+ 2

3∑
n=1

bn cos(kn∆xn) , (7)

where coefficients a and bn are defined using the Taylor expansion around k = 0,

a =
v2(x)

v2
0

[
1 +

(∆t)2(v2
0 − v2(x))(∆x2

1∆x2
2 + ∆x2

2∆x2
3 + ∆x2

3∆x2
1)

6∆x2
1∆x2

2∆x2
3

]
bn =

(∆t)2v2(x)(v2(x)− v2
0)

12(∆x2
n)v2

0

, (8)

and ∆xn is the sampling in the n-th direction. We only need to calculate these
coefficients once. After completing the calculation, they can be used at each time
step during the wave extrapolation process.

Equation 6 consists of two terms: the first term is independent of x and only de-
pends on k. For this part, we use inverse FFT to return to the space domain from the
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wavenumber domain. For the remaining part, however, we can avoid phase shift in
the wavenumber domain by implementing space shifts through finite differences (ap-
proximation 7) with coefficients provided by equation 8. This approach is analogous
to the FFD method proposed by Ristow and Ruhl (1994) for one-way extrapolation
in depth.

Figure 1 (a) shows approximations for [cos(v(x)|k|∆t) − 1] by the 4th-order FD
method (dash line) and pseudo-spectral method (dotted line). Figure 1 (b) shows
approximations by the FFD method (2nd-order: dash line, 4th-order: dotted line).
The solid lines stand for the exact values for function [cos(v(x)|k|∆t)− 1] with true
velocity: v = 4.0km/s (bottom solid line) and v0 = 2.0km/s (top solid line), which
indicates a significant velocity contrast (100% difference). In this situation, all the
approximations deviate from the exact solution as the wavenumber |k| becomes large.
However, the 4th-order FFD method approximates the exact solution with the most
accuracy, as shown in the error plot (Figure 2). In order to enhance the stability,
one can suppress the wavefield at high wavenumbers for both pseudo-spectral and
the FFD method.

Figure 1: Different approximations for cos(v(x)|k|∆t)− 1. Solid lines: exact solution
(cos(v(x)|k|∆t) − 1) for v = 4.0 km/s and v0 = 2.0 km/s. (a) Dash line: the 4th-
order FD. Dotted line: pseudo-spectral method. (b) Dash line: the 2nd-order FFD
method. Dotted line: the 4th-order FFD with v0 as reference velocity. ∆t = 0.001 s.
∆x = 0.005 km.

Assuming that p(x, t − ∆t) and p(x, t) are already known, the time-marching
algorithm can be specified as follows:

1. Transform p(x, t) to p̂(k, t) by 3-D FFT;

2. Multiply p̂(k, t) by 2 [cos(v0|k|∆t)− 1] to get q̂(k, t);

3. Transform q̂(k, t) to q(x, t) by inverse FFT;

4. Apply finite differences to q(x, t) with coefficients in equation 8 to get q(x, t +
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Figure 2: Errors for different approximations for cos(v(x)|k|∆t) − 1. Solid lines:
exact solution (cos(v(x)|k|∆t) − 1) for v = 4.0 km/s and v0 = 2.0 km/s. (a) Dash
line: the 4th-order FD. Dotted line: pseudo-spectral method. (b) Dash line: the 2nd-
order FFD method. Dotted line: the 4th-order FFD with v0 as reference velocity.
∆t = 0.001 s. ∆x = 0.005 km.

∆t). Namely,

qi,j,k(t+ ∆t) = ai,j,kqi,j,k(t)

+bi,j,k1 (qi−1,j,k(t) + qi+1,j,k(t))

+bi,j,k2 (qi,j−1,k(t) + qi,j+1,k(t))

+bi,j,k3 (qi,j,k−1(t) + qi,j,k+1(t)) , (9)

where i is the grid index of xi direction;

5. p(x, t+ ∆t)← q(x, t+ ∆t) + 2p(x, t)− p(x, t−∆t).

Here q(x, t) and q̂(k, t) are temporary functions.

The FFD approach is not limited to the isotropic case. In the case of transversally
isotropic (TTI) media, the term v(x) |k| on the left-hand side of equation 7, can be
replaced with the acoustic approximation (Alkhalifah, 1998, 2000; Fomel, 2004),

f(v, k̂, η) =

√
1

2
(v2

1 k̂
2
1 + v2

2 k̂
2
2) +

1

2

√
(v2

1 k̂
2
1 + v2

2 k̂
2
2)2 − 8η

1 + 2η
v2

1v
2
2 k̂

2
1 k̂

2
2 , (10)

where v1 is the P-wave phase velocity in the symmetry plane, v2 is the P-wave
phase velocity in the direction normal to the symmetry plane, η is the anisotropic
elastic parameter (Alkhalifah and Tsvankin, 1995) related to Thomsen’s elastic pa-
rameters ε and δ (Thomsen, 1986) by

1 + 2δ

1 + 2ε
=

1

1 + 2η
;
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and k̂1 and k̂2 stand for the wavenumbers evaluated in a rotated coordinate system
aligned with the symmetry axis:

k̂1 = k1 cosφ+ k2 sinφ

k̂2 = −k1 sinφ cos θ + k2 cosφ cos θ + k3 sin θ

k̂3 = k1 sinφ sin θ − k2 cosφ sin θ + k3 cos θ ,

(11)

where θ is the tilt angle measured with respect to vertical and φ is the angle be-
tween the projection of the symmetry axis in the horizontal plane and the original X-
coordinate. The symmetry axis has the direction of {− sin θ sinφ,− sin θ cosφ, cos θ}.

Using these definitions, we develop a finite-difference approximation analogous to
equation 7 for FFD in TTI media. The details of the derivation are given in the
appendix. For the 2D TTI case, the corresponding FFD algorithm is as following:

1. Transform p(x, t) to p̂(k, t) by FFT;

2. Multiply p̂(k, t) by
2[cos(f(v0, k̂, η0)∆t)− 1]

|k̂|2
to get q̂(k, t);

3. Transform q̂(k, t) to q(x, t) by inverse FFT;

4. Apply finite differences to q(x, t) with coefficients in Table 1 to get q(x, t+ ∆t).
Namely,

qi,j,t+∆t = ai,jqi,j,t (12)

+bi,j1 (qi−1,j,t + qi+1,j,t)

+bi,j2 (qi,j−1,t + qi,j+1,t)

+di,j1 (qi−2,j,t + qi+2,j,t)

+di,j2 (qi,j−2,t + qi,j+2,t)

+ci,j(qi−1,j−1,t + qi−1,j+1,t + qi+1,j−1,t + qi+1,j+1,t) .

where i is the grid index of xi direction;

5. p(x, t+ ∆t)← q(x, t+ ∆t) + 2p(x, t)− p(x, t−∆t).

Here, q(x, t) and q̂(k, t) are temporary functions.

NUMERICAL EXAMPLES

Our first example is a comparison of four methods: the 4th-order finite differences,
pseudo-spectral method, velocity interpolation, and the FFD method in a velocity
model with smooth variation, formulated as

v(x, z) = 550 + 1.5× 10−4(x− 800)2 + 10−4(z − 500)2;
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0 ≤ x ≤ 2560, 0 ≤ z ≤ 2560.

The velocity is between 550 m/s and 1439 m/s. A Ricker-wavelet source with max-
imum frequency 70 Hz is located at the center of the model. For all the numerical
simulations based on this model, we use the same grid size: ∆x = 5 m and ∆t = 2
ms.

Figure 3a shows an obvious numerical dispersion from the snapshot of the acoustic
wavefield computed by the 4th-order finite difference method. Figure 3b shows a slight
dispersion from the snapshot computed by pseudo-spectral method (Reshef et al.,
1988b). Figure 3c shows the corresponding snapshot of the velocity-interpolation
method (Etgen and Brandsberg-Dahl, 2009; Crawley et al., 2010), calculated using
two reference velocities. It is practically free of dispersion thanks to spectral com-
pensation. Figure 3d shows a snapshot of the proposed FFD method. It is almost
exactly the same as Figure 3c; however, only one reference velocity is used instead of
two. As comparison between Figure 3d and Figure 3c implies, the FFD method has
practically the same accuracy as the velocity interpolation method while having only
one reference velocity and therefore replacing the cost of one additional FFT with
the cost of a low-order finite-difference operator.

Our next example is a snapshot of the acoustic wavefield calculated by FFD in
the BP model (Billette and Brandsberg-Dahl, 2004). We use a Ricker-wavelet at a
point source. The maximum frequency is 50 Hz. The horizontal grid size ∆x is 37.5
m, the vertical grid size ∆z is 12.5 m and the time step is 1 ms. Figure 4 shows a
part of the model with a salt body. Figure 5 shows a wavefield snapshot confirming
that the FFD method can work in a complex-velocity medium as well.

Next we apply our FFD algorithm to RTM with a simple exponential decaying
boundary condition (Cerjan et al., 1985). The dominant frequency is 27 Hz. The
space grid is 25 m and the time step is 1.5 ms. Figure 6 shows the output image. The
inner and outer flanks of the salt body are clearly imaged.

The cost advantage of FFD is even more appealing in anisotropic (TTI) media,
which require multiple velocity parameters and increase the cost of velocity interpo-
lation. Figure 7 shows the impulse response of a 4th-order FFD operator in a TTI
model with the tilt of 45 ◦ and a smooth velocity variation (vx: 800-1225.41 m/s,
vz: 700-883.6 m/s). The space grid size is 5 m and the time step is 1 ms. Note no
coupling of qP-waves and qSV-waves (Zhang et al., 2009) in the figure, thanks to the
Fourier construction of the operator.

For this paper, we implemented a 2nd-order 5-point FD scheme for 2D isotropic
case. One can observe little dispersion in isotropic examples. For TTI media, we
use a 13-point scheme which minimizes the error in the symmetry plane and in the
direction normal to the symmetry plane. One can still see some dispersion in the
corresponding snapshot; which indicates that a higher order FD scheme might be
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a b

c d

Figure 3: Acoustic wavefield snapshot by: (a) 4th-order Finite Difference method; (b)
pseudo-spectral method; (c) velocity interpolation method with 2 reference velocities;
(d) FFD method with RMS velocity.
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Figure 4: Portion of BP 2004 synthetic velocity model.

required to further supress the dispersion.

Our last example is qP-wave simulation in the BP 2D TTI model. Figure 8a-8d
shows parameters for part of the model. The maximum frequency is 50 Hz. The space
grid size is 12.5 m and the time step is 1 ms. The snapshot of the acoustic wavefield
in Figure 9 demonstrates the stability of our approach in a complicated anisotropic
model. Some small dispersion is present in the TTI examples, pointing to a possible
need to extend the FD part of the FFD scheme from second order to higher orders.

CONCLUSIONS

Accurate and efficient numerical wave propagation in variable velocity media is crucial
for seismic modeling and seismic migration, particularly for reverse-time migration.
The FFD technique proposed in this paper promises higher accuracy than that of the
conventional, explicit finite-difference method, at the cost of only one forward and
inverse Fast Fourier Transform. Results in synthetic isotropic and anisotropic models
illustrate FFD’s stability in complicated velocity models. The method can be used
in reverse-time migration to enhance its accuracy and stability.
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Figure 5: Wavefield snapshot in the BP Model shown in Figure 4.
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Figure 6: RTM image of BP salt model.
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Figure 7: Wavefield snapshot in a TTI medium with tilt of 45 degrees. vx(x, z) =
800 + 10−4(x− 1000)2 + 10−4(z − 1200)2; vz(x, z) = 700 + 10−4(z − 1200)2; η = 0.3;
θ = 45 ◦.
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a b

c d

Figure 8: Partial region of the 2D BP TTI model. a: vz. b: vx. c: η. d:θ.
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Figure 9: Scalar wavefield snapshot in the 2D BP TTI model, shown in Figure 8.
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APPENDIX A

FFD FOR TTI MEDIA

To develop a 25-point finite-difference scheme analogous to equation 7 for FFD in 3D
TTI media, we first apply the following approximation:

cos(f(v, k̂, η)∆t)− 1

cos(f(v0, k̂0, η0)∆t)− 1
|k̂|2 ≈ (A-1)

a+ 2
∑3

n=1 (bn cos(kn∆xn) + dn cos(2kn∆xn))

+2
∑3

n=1 cn[cos(ki∆xi + kj∆xj) + cos(ki∆xi − kj∆xj)] ,

where i, j = 1, 2, 3; i 6= j; i, j 6= n.

In approximation A-1, f(v, k̂, η) is a function as in expression 10 and a, bn, cn
and dn are coefficients determined from the Taylor expansion around k = 0.

Notice that we multiply the left-hand side with |k̂|2, so one needs to multiply

p̂(k̂, t) with
2[cos(f(v0,k, η0)∆t)− 1]

|k̂|2
.

The coefficients for Equation A-1 are derived in Table 1 and Table 2. wn0, hn0,
pn0 and qn0 have similar expressions as above in Table 2 with v, η and θ substited by
the corresponding reference values: RMS velocity v0, average anisotropic parameter
η0 and average tilt angles θ0 and φ0.
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a a = −2b1 − 2b2 − 2b3 − 4c1 − 4c2 − 4c3 − 2d1 − 2d2 − 2d3

b b1 = −2c2 − 2c3 − 4d1 −
w1 + h1

∆x2
1(w10 + h10)

c b2 = −2c1 − 2c3 − 4d2 −
w2 + h2

∆x2
2(w20 + h20)

d b3 = −2c1 − 2c2 − 4d3 −
w3 + h3

∆x2
3(w30 + h30)

e d1 =
(w1 + h1)(2x2

1 + ∆t2(w10 + h10 − w1 − h1))

24∆x4
1(w10 + h10)

f d2 =
(w2 + h2)(2x2

2 + ∆t2(w20 + h20 − w2 − h2))

24∆x4
2(w20 + h20)

g d3 =
(w3 + h3)(2x2

3 + ∆t2(w30 + h30 − w3 − h3))

24∆x4
3(w30 + h30)

h
c1 =

1

12∆x2
2∆x2

3

[
∆x2

2(w2 + h2)

w20 + h20

+
∆x2

3(w3 + h3)

w30 + h30

]
− d2

∆x2
2

∆x2
3

− d3
∆x2

3

∆x2
2

+
∆t2(p1 + q1)(p10 + q10− p1− q1)

12∆x2
2∆x2

3(p10 + q10)

i
c2 =

1

12∆x2
1∆x2

3

[
∆x2

1(w1 + h1)

w10 + h10

+
∆x2

3(w3 + h3)

w30 + h30

]
− d1

∆x2
1

∆x2
3

− d3
∆x2

3

∆x2
1

+
∆t2(p2 + q2)(p20 + q20− p2− q2)

12∆x2
1∆x2

3(p20 + q20)

j
c3 =

1

12∆x2
1∆x2

2

[
∆x2

1(w1 + h1)

w10 + h10

+
∆x2

2(w2 + h2)

w20 + h20

]
− d1

∆x2
1

∆x2
2

− d2
∆x2

2

∆x2
1

+
∆t2(p3 + q3)(p30 + q30− p3− q3)

12∆x2
1∆x2

2(p30 + q30)

Table 1: Coefficients for equation A-1.
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a w1 = v2
1 cos2 φ+ sin2 φ(v2

1 cos2 θ + v2
2 sin2 θ)

b w2 = (v2
1 + v2

2) cos2 φ cos2 θ + v2
1 sin2 θ

c w3 = v2
1 sin2 θ + v2

2 cos2 θ

d h1 =

√
w12 − 8ηv2

1v
2
2 sin2 φ(cos2 φ+ sin2 φ cos2 θ) sin2 θ

1 + 2η

e h2 =

√
w22 − 8ηv2

1v
2
2 cos2 φ cos2 θ(cos2 φ cos2 θ + sin2 φ)

1 + 2η

f h3 =

√
w32 − 8ηv2

1v
2
2 cos2 θ sin2 θ

1 + 2η

g p1 = w2 + w3 + v2
1 cosφ sin 2θ − 2v2

2 cosφ cos2 θ

h q1 =

√
p2

1 −
32ηv2

1v
2
2 cos2 θ sin4 φ

2
(cos2 φ cos2 θ + sin2 θ + sin2 φ+ cosφ sin 2θ)

1 + 2η
i p2 = w1 + w3 + (v2

2 − v2
1) sinφ sin 2θ

j q2 =

√
p2

2 −
8ηv2

1v
2
2(cos θ + sinφ sin θ)2(cos2 φ+ (cos θ sinφ− sin θ)2)

1 + 2η

k p3 = w1 + w2 + v2
1 sin2 θ sin 2φ+ 1

2
v2

2 sin 2φ sin 2θ

l q3 =

√
p2

3 −
4ηv2

1v
2
2 cos2(φ+ θ)(sin 2φ cos 2θ − 3− cos 2θ − sin 2φ)

1 + 2η

Table 2: Coefficients for Table 1.



Song & Fomel 18 FFD wave propagation

Bednar, J., 2005, A brief history of seismic migration: Geophysics, 70, 3MJ–20MJ.
Billette, F. J., and S. Brandsberg-Dahl, 2004, The 2004 BP velocity benchmark: 67th

Annual EAGE Meeting, EAGE, Expanded Abstracts, B305.
Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef, 1985, A nonreflecting boundary

condition for discrete acoustic and elastic wave equations: Geophysics, 50, 705–708.
Crawley, S., S. Brandsberg-Dahl, and J. McClean, 2010, 3d TTI RTM using the

pseudo-analytic method: 80th Ann. Internat. Mtg., Soc. Expl. Geophys., 3216–
3220.

Du, X., R. P. Fletcher, and P. J. Fowler, 2010, Pure P-wave propagators versus
pseudo-acoustic propagators for RTM in VTI meida: 72nd Annual EAGE Meeting,
EAGE, Expanded Abstracts, Accepted.

Etgen, J., 1989, Accurate wave equation modeling, in SEP-60: Stanford Exploration
Project, 131–148.

Etgen, J., and S. Brandsberg-Dahl, 2009, The pseudo-analytical method: application
of pseudo-Laplacians to acoustic and acoustic anisotropic wave propagation: 79nd
Annual International Meeting, SEG, Expanded Abstracts, 2552–2556.

Etgen, J., S. H. Gray, and Y. Zhang, 2009, An overview of depth imaging in explo-
ration geophysics: Geophysics, 74, WCA5–WCA17.

Fletcher, R. P., X. Du, and P. J. Fowler, 2009, Reverse time migration in tilted
transversely isotropic (TTI) media: Geophysics, 74, WCA179–WCA187.

Fomel, S., 2004, On anelliptic approximations for qP velocities in VTI media: Geo-
physical Prospecting, 52, 247–259.

Fomel, S., L. Ying, and X. Song, 2010, Seismic wave extrapolation using a lowrank
symbol approximation: 80th Ann. Internat. Mtg., Soc. Expl. Geophys., 3092–3096.

Fowler, P. J., X. Du, and R. P. Fletcher, 2010, Coupled equations for reverse time
migration in transversely isotropic media: Geophysics, 75, S11–S22.

Levin, S. A., 1984, Principle of reverse time migration: Geophysics, 49, 581–583.
Liu, F., S. A. Morton, S. Jiang, L. Ni, and J. P. Leveille, 2009, Decoupled wave

equations for P and SV waves in an acoustic VTI media: 79th Ann. Internat. Mtg.,
Soc. Expl. Geophys., 2844–2848.

Liu, Y., and M. K. Sen, 2009, A new time-space domain high-order finite-difference
method for the acoustic wave equation: Journal of computational Physics, 228,
8779–8806.

McMechan, G. A., 1983, Migration by extrapolation of time-dependent boundary
values: Geophys. Prosp., 31, 413–420.

Pestana, R. C., and P. L. Stoffa, 2010, Time evolution of the wave equation using
rapid expansion method: Geophysics, 75, T121–T131.

Reshef, M., D. Kosloff, M. Edwards, and C. Hsiung, 1988a, Three-dimensional acous-
tic modeling by the Fourier method: Geophysics, 53, 1175–1183.

——–, 1988b, Three-dimensional acoustic modeling by the fourier method: Geo-
physics, 53, 1175–1183.

Ristow, D., and T. Ruhl, 1994, Fourier finite-difference migration: Geophysics, 59,
1882–1893.

Song, J., 2001, The optimized expression of a high dimensional function/manifold in
a lower dimensional space: Chinese Scientific Bulletin, 46, 977–984.



Song & Fomel 19 FFD wave propagation

Soubaras, R., and Y. Zhang, 2008, Two-step explicit marching method for reverse
time migration: 78th Ann. Internat. Mtg., Soc. Expl. Geophys., 2272–2276.

Symes, W. W., 2007, Reverse time migration with optimal checkpointing: Geophysics,
72, SM213–SM221.

Tal-Ezer, H., D. Kosloff, and Z. Koren, 1987, An accurate scheme for seismic forward
modeling: Geophysical Prosecting, 35, 479–490.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966.
Whitmore, N. D., 1983, Iterative depth migration by backward time propagation:

53rd Ann. Internat. Mtg., Soc. Expl. Geophys., 382–385.
Wu, W., L. R. Lines, and H. Lu, 1996, Analysis of high-order, finite-difference schemes

in 3-D reverse-time migration: Geophysics, 61, 845–856.
Yoon, K., K. J. Marfurt, and W. Starr, 2004, Challenges in reverse-time migration:

74th Ann. Internat. Mtg., Soc. Expl. Geophys., 1057–1061.
Zhang, H., G. Zhang, and Y. Zhang, 2009, Removing S-wave noise in TTI reverse

time migration: 79th Ann. Internat. Mtg., Soc. Expl. Geophys., 2849–2853.
Zhang, Y., and G. Zhang, 2009, One-step extrapolation method for reverse time

migration: Geophysics, 74, A29–A33.


