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ABSTRACT

According to the compressive sensing (CS) theory in the signal-processing field,
we proposed a new CS approach based on a fast projection onto convex sets
(POCS) algorithm with sparsity constraint in the seislet transform domain. The
seislet transform appears to be the sparest among the state-of-the-art sparse
transforms. The FPOCS can obtain much faster convergence than conventional
POCS (about two thirds of conventional iterations can be saved), while main-
taining the same recovery performance. The FPOCS can obtain faster and better
performance than FISTA for relatively cleaner data but will get slower and worse
performance than FISTA, which becomes a reference to decide which algorithm
to use in practice according the noise level in the seismic data. The seislet trans-
form based CS approach can achieve obviously better data recovery results than
f − k transform based scenarios, considering signal-to-noise ratio (SNR), local
similarity comparison, and visual observation, because of a much sparser struc-
ture in the seislet transform domain. We have used both synthetic and field data
examples to demonstrate the superior performance the proposed seislet-based
FPOCS approach.

INTRODUCTION

Most of the time, seismic data processing need a regular and dense dataset input,
which is of extreme importance for obtaining a high-resolution result. However, dur-
ing the data acquisition process, many different reasons may result in the missing
traces, including economic reasons, ground surface limitations, and regulatory rea-
sons. Seismic data reconstruction is such a pre-condition procedure that can be used
to remove sampling artifacts, filling the gaps, and to improve amplitude analysis,
which is indispensable for the subsequent processing steps including high-resolution
processing, wave-equation migration, multiple suppression, amplitude-versus-offset
(AVO) or amplitude-versus-azimuth (AVAZ) analysis, and time-lapse studies (Trad
et al., 2002; Liu and Sacchi, 2004; Abma and Kabir, 2005, 2006; Wang et al., 2010;
Naghizadeh and Sacchi, 2010; Chen et al., 2014a; Zhong et al., 2015).
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In recent years, because of the popularity of compressive sensing (CS) based ap-
plications (Candès et al., 2006b), there exists a new paradigm for seismic data acqui-
sition that can potentially reduce the survey time and increase the data resolution
(Herrmann, 2010). Compressive sensing (CS) is a relatively new paradigm in signal
processing that has recently received a lot of attention. The theory indicates that
the signal which is sparse under some basis may still be recovered even though the
number of measurements is deemed insufficient by Shannon’s criterion. The prin-
ciple of CS involves solving a least-square minimization problem with a L1 norm
penalty term of the reconstructed model, which requires compromising a least-square
data-misfit constraint and a sparsity constraint over the reconstructed model. The it-
erative shrinkage thresholding (IST) and the projection onto convex sets (POCS) are
two common approaches used to solve the minimization problem in the exploration
geophysics field.

Inspired from the fast iterative shrinkage-thresholding algorithm (FISTA) intro-
duced in Beck and Teboulle (2009), we propose a similar faster version of POCS
(FPOCS). Sparsity of seismic data has been explored utilizing different transforms,
such as Fourier transform, curvelet (Candès et al., 2006a) and synchrosqueezed wavelet
transform (Chen et al., 2014c). We compare the sparseness of different well-known
sparse transforms by displaying the transform domain and drawing the transform
domain coefficients decaying curves. The comparison shows that the seislet trans-
form is obviously sparser than other alternative sparse transforms. Thus, we use the
seislet transform (Fomel and Liu, 2010; Chen et al., 2014b) as the sparsity promoting
transform in the compressive sensing data recovery framework in order to explore
its related behaviors. Both synthetic and field data examples show that the pro-
posed seislet based FPOCS can obtain better and faster data recovery than the f -k
transform based POCS method.

The contributions of the paper can be divided into three aspects. (1) We extend
the acceleration strategy used previously in the IST approach to POCS approach,
and compare the performance difference of IST and POCS (and related FISTA and
FPOCS) in seismic data with different noise level and pointed out that the selection
of IST or POCS depends on the noise level of seismic data. (2) We compare the trans-
form domain sparsity of different well-known sparse transforms in terms of the plotted
sparse coefficients and coefficients decaying diagrams, and find out that the seislet
transform has a much sparser transform domain structure than Fourier transform,
wavelet transform, and the curvelet transform. (3) The seislet-based CS approach
for seismic data reconstruction is initially investigated and the performance of seislet-
based approach and f -k based approach are compared in terms of the reconstruction
signal-to-noise ratio (SNR), local similarity comparison, and visual observation.
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METHODS

Problem statement

The interpolation problem in a CS framework can be summarized in the following
model:

dobs = Sd,m = Ad (1)

where dobs is the observed data, S is the sampling operator, d is the unknown data we
would like to estimate, A is the sparsity-promoting transform, and m is the transform
domain coefficients.

The synthesis based approach solves the following problem:

min
m
‖ dobs − SA−1m ‖22 +λ ‖m ‖1, (2)

where A−1 denotes the inverse sparsity-promoting transform.

The analysis-based approach solves the following problem:

min
d
‖ dobs − Sd ‖22 +λ ‖ Ad ‖1 . (3)

The analysis-based approach emphasizes the sparsity of the canonical transformed
coefficients, so it tends to recover data with smooth regions; while the synthesis-
based approach finds the sparsest approximation of the given data in the transformed
domain (Liang et al., 2014).

Fast iterative shrinkage thresholding algorithm

The iterative shrinkage thresholding (IST) is one of the most effective methods to
solve problem 2:

mn+1 = Tτ

[
mn + (SA−1)H(dobs − (SA−1)mn)

]
, (4)

where mn denotes the coefficients model after nth iteration, Tτ denotes a thresh-
olding operator (which is a nonlinear operator) with an input parameter τ , and [·]H
denotes the adjoint operator. It’s worth noting that τ has different connections with
λ according to the thresholding type (Chen et al., 2014a).

Due to the O(1/k) convergence of IST, implementing IST is usually very time-
consuming in practice. Beck and Teboulle (2009) proposed the fast iterative shrinkage
thresholding algorithm (FISTA) to improve the convergence rate:

m′n = mn +
vn − 1

vn+1

(mn −mn−1),

mn+1 = Tτ

[
m′n + (SA−1)H

(
dobs − (SA−1)m′n

)]
,

(5)
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where vn is a controlling parameter with the initial value v0 = 1 and vn+1 = (1 +√
1 + 4v2n)/2.

The improved convergence rate is O(1/k2), and thus becomes widely used in the
image-processing field since its invention.

Projection onto convex sets and its fast version

In exploration geophysics field, geophysicists prefer formulating the seismic data re-
construction problem as problem 3. The projection onto convex sets (POCS) algo-
rithm is one of the most widely used methods for reconstructing missing seismic data,
especially for those irregular sampled seismic data binned onto regular grids. The
POCS (Abma and Kabir, 2006) aims to solve equation 3 by the following framework:

dn+1 = dobs + (I− S)A−1Tτ [A(dn)] , (6)

where dn denotes the estimated data after nth iteration.

Inspired from the FISTA, we propose the following faster version of POCS (FPOCS):

d′n = dn +
vn − 1

vn+1

(dn − dn−1),

dn+1 = dobs + (I− S)A−1Tτ [A(d′n)] .

(7)

An obvious difference between IST and POCS (or between FPOCS and FISTA) is
whether we make use of the known data. Briefly speaking, the IST (FISTA) treats
all the data components as unknown while POCS (FPOCS) only treats the missing
data components as unknown. The comparison between IST (FISTA) and POCS
(FPOCS) in terms of the reconstruction performance and convergence rate can be
done from two cases: irregularly sampled noisy data and irregularly sampled clean
data. We will implement such two comparisons in the section of examples. The
general conclusion can be given in advance: for irregularly sampled noisy dataset,
the IST (FISTA) method can be superior because during the thresholding process,
the extra random noise will be attenuated gradually; for irregularly sampled clean
dataset, the POCS (FPOCS) method can be superior because the known sampled
data help constrain the spatial coherency during the inversion. Here, the noisy level
is relative. Those data acquired from the marine acquisition are much better than
those data from land acquisition. In this paper, we only deal with the datasets from
marine acquisition, thus we prefer the FPOCS instead of the FISTA.

Review of seislet transform

The construction of seislet transform (Fomel and Liu, 2010) follows the basics of the
second-generation wavelet transform. The forward transform starts with the finest
scale (the original sampling) and goes to the coarsest scale. The inverse transform
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starts with the coarsest scale and goes back to the finest scale (Chen et al., 2014b).
The forward and inverse seislet transforms can be expressed as:

r = o−P [e], (8)

c = e + U [r], (9)

e = c−U [r], (10)

o = r + P [e], (11)

where P is the prediction operator, U is the updating operator. r denotes the dif-
ference between true odd trace and predicted odd trace (from even trace), c denotes
a coarse approximation of the data. At the start of forward transform, e and o cor-
respond to the even and odd traces of the data domain. At the start of the inverse
transform, c and r will have just one trace of the coarsest scale of the seislet domain.
The seislet transform differs from the wavelet transform in that the prediction and
updating operators utilize the local slope of seismic profiles to predict and update the
even and odd traces. The above prediction and update operators can be defined as
follows:

P [e]k =
(
P

(+)
k [ek−1] + P

(−)
k [ek]

)
/2, (12)

U [r]k =
(
P

(+)
k [rk−1] + P

(−)
k [rk]

)
/4, (13)

where P
(+)
k and P

(−)
k are operators that predict a trace from its left and right neigh-

bors, correspondingly, by shifting seismic events according to their local slopes. The
local slope can be calculated using a robust algorithm as introduced in Fomel (2002).

Comparison of sparsity-promoting transforms

The well-known exited sparsity-promoting transforms in the exploration geophysics
field include the Fourier(Bochner and Chandrasekharan, 1949), wavelet transform(Akansu
et al., 2010), and curvelet transform (Candès et al., 2006a).

In order to effectively compare the sparseness of different transforms, we first
select an input dataset (here, we use the synthetic example shown in Figure 3a as
the input dataset). Then we transform the input data into sparse transform domain
using different sparse transforms. Figure 1 shows different transformed domains for
the input data. The 2-D Fourier transform in this case means the f − k transform.
The 2-D wavelet transform means implementing the 1-D wavelet transform along
the temporal direction first and along the spatial direction second. The 2-D seislet
transform means implementing the seislet transform along the spatial direction first
and 1-D seislet transform along the temporal direction second. The 2-D curvelet
transform refers to the 2-D wedge wrapping based fast discrete curvelet transform
(Candès et al., 2006a). Next we sort the coefficients in the transform domains into
decaying 1-D vectors according to the coefficient amplitude and scale the 1-D vectors.
Finally we plot the decaying coefficients with respect to the sequence number for
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all the transforms in one plot. Figure 2 shows a comparison between the decay of
sorted coefficients in the 2-D Fourier transform, 2-D wavelet transform, 2-D seislet
transform and 2-D curvelet transform domains. Our experiments show that the seislet
coefficients decay significantly faster than coefficients of the other transforms, which
indicates a more compact structure of the seislet domain. Thus, our FPOCS is
preferred to use the 2-D seislet transform domain as the sparsity-promoting transform.

(a) (b)

(c) (d)

Figure 1: Comparison among different sparsity-promoting transforms based on the
synthetic example shown in Figure 3a. (a) 2-D Fourier transform domain. (b) 2-
D Wavelet transform domain. (c) 2-D Seislet transform domain. (d) 2-D Curvelet
transform domain.

EXAMPLES

We use one synthetic example and one field data example to demonstrate the in-
terpolation effect using the proposed approach. The first synthetic example is a
combination of linear reflectors, curved reflectors and faults. The original data and
decimated data with 30% randomly removed traces are shown in Figures 3a and 3b,
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Figure 2: Coefficients decreasing diagram of different sparsity-promoting transforms.

respectively. After f − k based POCS and FPOCS, and seislet based POCS and
FPOCS, the reconstructed data and their corresponding error sections using differ-
ent approaches are shown in Figures 4 and 6, respectively. In this paper, we use
the percentile thresholding strategy (Chen et al., 2014a). The percentile threshold-
ing refers to using a constant percentage of maximum coefficients during the itera-
tions. For the first example, 15 % coefficients are preserved during the iterations.
The percentile thresholding refers to using a constant percentage of maximum co-
efficients during the iterations. We zoom in the frame boxes as shown in Figures
3 and 4, and show the zoomed sections in Figure 8 for better comparison. In or-
der to numerically compare the performance, we use the signal-to-noise ratio (SNR):
SNR = 10 log10(‖dtrue‖22/‖dtrue − dinter‖22) , which is widely used in the literature
to numerically measure the data recovery error (Liu et al., 2009a; Yang et al., 2015).
We plot the SNR diagram of the first example in Figure 9. As can be seen from the
comparison of different approaches, the seislet based POCS and FPOCS obviously
perform better than f −k based POCS and FPOCS, according to both SNR compar-
ison and visual observation. It should be mentioned that the superior performance
of FPOCS algorithm depends on the parameter selection (percentage of coefficients
in the transformed domain) in the percentile thresholding strategy. Figure 9 shows
the performances of different algorithms using the best selected parameter (the per-
centage is 15 %), while Figure 10 shows the performance of different algorithms using
inappropriate parameter (the percentage is 20 %). It is obvious that in Figure 10,
both seislet based FPOCS and f − k based FPOCS go through an SNR increasing
and then decreasing process. Thus, when using the FPOCS algorithm in practice,
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we might need to have several parameters tuning process in order to select the best
parameter. The reconstructed results using FPOCS and POCS are nearly the same.
From the convergence diagram, we can confirm that the FPOCS and POCS converge
to the same SNR but FPOCS converges much faster. Figure 11a shows the ampli-
tude comparison for the 175th trace (as highlighted in Figures 3a, 4b and 4d). It is
also obvious that the seislet based FPOCS approach can obtain better performance
than the f − k based FPOCS approach. In addition to the SNR comparison, we also
use another newly developed way to measure the recovery performance: the local
similarity. The local similarity was initially used to measure the signal reconstruc-
tion in the noise attenuation problem (Chen and Fomel, 2015). Here, we borrow the
same way to numerically measure the data reconstruction performance. Appendix
A gives a short review of the local similarity and its calculation. We use the local
similarity in two ways: 1) to calculate the local similarity between the true data and
the reconstructed data; 2) to calculate the local similarity between the true data and
the estimation error. The higher the former similarity is, the better reconstruction
performance is, since such similarity measure the correctness. However, the higher
the latter similarity is, the worse reconstruction performance is, since such similarity
magnifies the error. Figure 5 shows the local similarity between the true dataset
and the reconstructed data. The two similarity maps on the bottom row obviously
contains fewer anomalies than that on the top row, indicating that the two f -k based
approaches cause more error than the seislet based approaches. Please note that the
the maximum local similarity is 1, which means that the two compared signals are
exactly the same. Figure 7 shows the local similarity between the true dataset and
the reconstruction error. The two similarity maps on the bottom show small values
while the two maps on the top row show high-value anomalies, further confirming the
superior performance using the seislet-based approach. Figure 11b shows the local
similarity comparison (between the reconstructed trace and the true trace), which
again confirms that the reconstructed trace using the seislet-based approach is much
more similar to the true data.

In order to compare the difference between IST and POCS (or between FPOCS
and FISTA). We do two experiments with clean and noisy irregularly sampled datasets,
respectively. For the clean data case, we use the same synthetic example as shown
in Figures 3a and 12a. We reconstruct the missing data with seislet POCS, seislet
FPOCS, seislet IST, seislet FISTA, and show the convergence diagrams in terms of
SNR in Figure 12b. It is obvious that both seislet POCS and seislet FPOCS obtain
better converged results than seislet IST and seislet FISTA, which results from the
fact that in POCS based methods the sampled clean data components help constrain
the model during the inversion. However, for the noisy data case, as shown in Figure
12c, the convergence diagrams show opposite performance compared with the clean
data case. Both seislet POCS and seislet FPOCS obtain better converged results than
seislet IST and seislet FISTA. This phenomenon results from the fact that during the
inversion, the IST based methods can help remove the random noise iteratively while
the POCS based approaches maintain the random noise in the known data compo-
nents. The conclusion from these two experiments can guide us to decide which type
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of method (POCS or IST) to use in practice according to the level of noise existing
in the seismic data: for relatively noisier dataset, the IST (FISTA) method can be
superior because during the thresholding process, the extra random noise will be at-
tenuated gradually; for relatively cleaner dataset, the POCS (FPOCS) method can be
superior because the known sampled data help constrain the spatial coherency during
the inversion. Currently, we do not have ways to quantify the noise level acceptable
for FPOCS. It might be an interesting topic for future investigation.. The next field
data example is from a marine survey, with high data quality, thus we keep using the
POCS based approach for comparison

The second example is a field data example, as shown in Figures 13a. The in-
complete data by randomly removing 30% traces is shown in Figure 13b. The
reconstructed results for the field data example are shown in Figures 14. For the
field data example, 18 % coefficients are preserved during the iterations. The error
sections using different approaches are shown in Figure 16. It is obvious that the
reconstructed data using seislet based approach are much more coherent than f − k
based and have less reconstruction error. We also show zoomed sections in Figure 18
for better comparison. The SNR diagrams are shown in Figure 19. It also shows a
similar conclusion that is consistent with that from the previous synthetic example:
the seislet-based approaches can obtain better reconstruction performance and the
the FPOCS can obtain much faster convergence. Because f − k transform is a global
transform, f−k based approaches will cause artifacts outside the main data structure,
as can be seen at the top of Figure 14b. Since the seislet transform is a local transform,
it will not cause such artifacts. Figure 20a shows the amplitude comparison for the
48th trace (as highlighted in Figures 13a, 14b and 14d). It is obvious that the seislet
based FPOCS has less reconstruction error compared with the f − k based FPOCS.
Figure 15 shows the local similarity between the true field data and the reconstructed
datasets. The two similarity maps on the bottom row have relatively smaller values
than that on the top row, indicating that the seislet based approaches can obtain
more accurate reconstructed results. The low-value anomalies in the deep-water part
are caused by the low-amplitude (nearly zero) deep-water reflections and should not
be taken into the consideration in evaluating different performance. Figure 17 shows
the local similarity between the true dataset and the reconstruction error. The two
similarity maps on the bottom show small values while the two maps on the top row
show high-value anomalies, further confirming the superior performance using the
seislet-based approach. Figure 20b shows the local similarity comparison for the field
data example (between the reconstructed trace and the true trace), which further
confirms the aforementioned conclusions.

DISCUSSIONS

The seislet transform was proposed in Fomel and Liu (2010). In this paper, we first
compare the sparsity of different well-known transforms widely used in the seismic
data processing community, including the Fourier transform, the wavelet transform,
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(a) (b)

Figure 3: (a) Synthetic data. (b) Decimated synthetic data with 30% removed traces.

(a) (b)

(c) (d)

Figure 4: (a)-(d) Reconstructed sections corresponding to POCS with f -k threshold-
ing, FPOCS with f -k thresholding, POCS with seislet thresholding and FPOCS with
seislet thresholding.
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(a) (b)

(c) (d)

Figure 5: Local similarity between the reconstructed sections with the true data using
different approaches. (a) f -k POCS. (b) f -k FPOCS. (c) Seislet POCS. (d) Seislet
FPOCS.
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(a) (b)

(c) (d)

Figure 6: (a)-(d) Reconstruction error sections corresponding to Figures 4a-4d, re-
spectively.
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(a) (b)

(c) (d)

Figure 7: Local similarity between the error sections with the true data using different
approaches. (a) f -k POCS. (b) f -k FPOCS. (c) Seislet POCS. (d) Seislet FPOCS.
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Zoomed sections. (a) True data. (b) Decimated data. (c) POCS with f -k
thresholding. (d) FPOCS with f -k thresholding. (e) POCS with seislet thresholding.
(f) FPOCS with seislet thresholding.
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Figure 9: SNR comparison of the synthetic example, when the best parameter is
selected.



Gan et al. 16 Compressive sensing with seislet

0 5 10 15 20 25 30
4

6

8

10

12

14

16

18

Iteration no. #

S
N

R
 (

d
B

)

SNR Comparison

 

 

POCS (FK)
FPOCS (FK)
POCS (seislet)
FPOCS (seislet)

Figure 10: SNR comparison of the synthetic example, when the inappropriate pa-
rameter is selected.
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(a)

(b)

Figure 11: (a) Amplitude comparison. (b) Local similarity comparison. Black solid
line denotes the true trace. Red dot dashed line denotes FPOCS with seislet thresh-
olding. Green dashed line denotes FPOCS using f -k thresholding. Note that the
amplitude using seislet thresholding is much closer to the true amplitude and the
local similarity using seislet thresholding is much closer to the maximum similarity:
1.
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Figure 12: (a) Clean synthetic data. (b) Comparison of POCS (FPOCS) and IST
(FISTA) of clean data in terms of SNR. (c) Noisy synthetic data. (d) Comparison of
POCS (FPOCS) and IST (FISTA) of noisy data in terms of SNR.
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(a) (b)

Figure 13: Field data example. (a)True field data. (b) Decimated field data with 30
% removed traces.

the curvelet transform, and the seislet transform. The comparison, to the best of
our knowledge, is never done in the literature. This sparse comparison offers us a
new view in selecting the sparsest transform for related applications in seismic data
processing. The seislet transform has found successful applications in noise attenua-
tion (Liu et al., 2009b; Fomel and Liu, 2010). However, the successful application of
the seislet transform in iterative interpolation, especially from the industry, is barely
reported. One of the drawbacks that impede the wide application of seislet based
interpolation is the efficiency. The seislet transform itself does not slow down the effi-
ciency too much. The efficiency of seislet transform is about 2-4 times slower than the
fast Fourier transform, and is about 4-8 times slower than the fast wavelet transform
Fomel and Liu (2010). However, the slope estimation that is required by the seislet
transform is much slower. In order to accelerate the process, the slope estimation is
commonly estimated every several iterations. In this paper, the slope estimation is
iterated every 5 iterations. Even though, the computational cost is still much heavier
than the widely used Fourier transform. In this paper, the FPOCS approach can
greatly accelerate the efficiency by reducing a large number of iterations. According
to the performance of the two examples in the paper, about two thirds iterations can
be saved using the fast iterative approach. The cost saving in the paper is only ob-
tained from 2D data examples. The application of 3D seislet-based POCS approach
can even offer more cost savings, which will potentially allow the wide application of
the seislet transform in the industry.



Gan et al. 20 Compressive sensing with seislet

(a) (b)

(c) (d)

Figure 14: Field data example. (a)-(d) Reconstructed sections corresponding to
POCS with f -k thresholding, FPOCS with f -k thresholding, POCS with seislet
thresholding and FPOCS with seislet thresholding. Note the artifacts caused by
the f -k based methods, as pointed out by the arrows.



Gan et al. 21 Compressive sensing with seislet

(a) (b)

(c) (d)

Figure 15: Field data example. Local similarity between the reconstructed sections
with the true data using different approaches. (a) f -k POCS. (b) f -k FPOCS. (c)
Seislet POCS. (d) Seislet FPOCS.
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(a) (b)

(c) (d)

Figure 16: Field data example. (a)-(d) Reconstruction error sections corresponding
to Figures 14a-14d, respectively.
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(a) (b)

(c) (d)

Figure 17: Field data example. Local similarity between the error sections with the
true data using different approaches. (a) f -k POCS. (b) f -k FPOCS. (c) Seislet
POCS. (d) Seislet FPOCS.
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(a) (b)

(c) (d)

(e) (f)

Figure 18: Zoomed sections of the field data example. (a) True data. (b) Decimated
data. (c) POCS with f -k thresholding. (d) FPOCS with f -k thresholding. (e) POCS
with seislet thresholding. (f) FPOCS with seislet thresholding.
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Figure 19: SNR comparison of the field data example.

The widely used POCS and IST algorithms can be both considered as the simplest
and most effective iterative approaches for seismic data interpolation. In a mathemat-
ical sense, the IST is a type of POCS, the multiple projections include the weighted
projection (model update), the forward sparse transform, the soft thresholding, and
the inverse sparse transform. However, in the community of exploration geophysics,
the IST algorithm and the POCS algorithm are different. The most apparent differ-
ence is whether to use the known data as a part of the model. However, there is no
published literature discussing the performance difference using the two approaches.
We use a group of two simple but convincing tests with and without strong random
noise to show the slight difference between the two approaches. The selection of the
two approach simply depends on the noise level in the seismic data. When the noise
level is high, we should use the IST based approach (FIST), otherwise, we should use
the POCS based approach (FPOCS).

How to measure data recovery performance is another long-standing argument in
the seismic data processing community. In the case of simulated test, in which we
know the true answer, the traditionally used signal-to-noise ratio (SNR) seems to
be the best choice. However, the SNR can only obtain a global measurement of the
recovery quality while the local performance is not measured effectively. For example,
an extrema (or huge error) in a local area will also result in a small global average. We
use the local similarity (Fomel, 2007a) as a way to measure the data reconstruction
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(a)

(b)

Figure 20: Field data example. (a) Amplitude comparison. (b) Local similarity com-
parison. Black solid line denotes the true trace. Red dot dashed line denotes FPOCS
with seislet thresholding. Green dashed line denotes FPOCS using f -k thresholding.
Note that the amplitude using seislet thresholding is much closer to the true ampli-
tude and the local similarity using seislet thresholding is much closer to the maximum
similarity: 1.
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performance in this paper. This evaluation is based on the assumption that the true
signal and the estimated should have high local similarity and the true signal and the
estimation error should have low local similarity. From the local similarity maps, we
can get more details of different approaches. We can observe clearly that, even in the
case of very close SNRs, the local similarity can still show slight but obvious difference,
which makes it more sensitive in comparing different state-of-the-art approaches.

CONCLUSION

We have proposed a novel fast projection onto convex sets (FPOCS) solver for com-
pressive sensing of seismic data via sparsity constraint in seislet transform domain.
The seislet transform is demonstrated to be much sparser than other state-of-the-art
sparse transforms and thus is more suitable for a compressive sensing based seis-
mic data recovery approach. The FPOCS can obtain much faster convergence than
conventional POCS, which can potentially make the seislet-based POCS approach ap-
plicable in practice according to the efficiency acceleration. We have found that the
the POCS based approach can be superior than the IST based approach in relatively
cleaner dataset while can be slightly worse than the IST based approach in relatively
noisier dataset. This conclusion can guide us to use different iterative approach ac-
cording to the noise level in the data. In addition to the signal-to-noise ratio (SNR),
the local similarity is also used to measure the data recovery performance. We are
surprisingly to find out that even in the case of very close SNRs, the local similarity
can still show slight but obvious difference, and thus the local similarity measure-
ment is more sensitive in comparing different state-of-the-art approaches. The seislet
transform based compressive sensing can achieve obviously better data recovery re-
sults than f − k transform based scenarios because of a much sparser structure in
the seislet transform domain. We have used both synthetic and field data exam-
ples to demonstrate the superior performance of the proposed seislet-based FPOCS
approach.
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APPENDIX A: REVIEW OF LOCAL SIMILARITY

A common way to measure the similarity between two signals is to calculate the global
correlation coefficient:

γ =

N∑
i=1

a(i)b(i)√√√√ N∑
i=1

a2(i)
N∑
i=1

b2(i)

, (14)

where r is the global correlation coefficient, N denotes the number of samples of the
signals a and b. In order to calculate the similarity between two signals locally, one
can use the localized correlation coefficient:

γm(t) =

t+m/2∑
i=t−m/2

a(i)b(i)√√√√ t+m/2∑
i=t−m/2

a2(i)

t+m/2∑
i=t−m/2

b2(i)

, (15)

where γm(t) denotes the local correlation coefficient, m is the local window size.

Fomel (2007a) designed an elegant way to calculate the local similarity:

γ(t) =
√
γ1(t)γ2(t), (16)

γ1(t) = arg min
γ1(t)

(∑
t

(a(t)− γ1(t)b(t)) +R(γ1(t))

)
, (17)

γ2(t) = arg min
γ2(t)

(∑
t

(b(t)− γ2(t)a(t)) +R(γ2(t))

)
. (18)

Equation 16 represents that the local similarity can be expressed as the product of
two vectors that are the solutions of two minimization problems. R is a regularization
operator for constraining γ1 and γ2. R can be chosen as a local triangular smoother
to enforce the smoothness of vectors γ1 and γ2, and then equations 17 and 18 can be
solved using the shaping regularization (Fomel, 2007b):

γ1 = [λ21I + S(BTB− λ21I)]−1SBTa, (19)

γ2 = [λ22I + S(ATA− λ22I)]−1SATb, (20)

where A is a diagonal operator composed from the elements of a: A = diag(a) and
B is a diagonal operator composed from the elements of b: B = diag(b). S is a
smoothing operator, and λ1 and λ2 are two parameters controlling the physical di-
mensionality and enabling fast convergence when inversion is implemented iteratively.
These two parameters can be chosen as the least-squares norms of A and B (Fomel,
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2007a). The local similarity algorithm can be used to calculate the local similarity
of signal of any dimension. For 1D signals, the meanings of equations 19 and 20 are
intuitive. For 2D or higher-dimensional signals, each signal is first reshaped into a 1D
signal and then follows equations 19 and 20 to calculate the local similarity vector.
The smoothing operator is applied to the 2D or multi-dimensional form of the original
signal to enforce the smoothness in any dimension.
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