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ABSTRACT

Although there is an increase in the amount of seismic data acquired with wide-
azimuth geometry, it is difficult to achieve regular data distributions in spatial
directions owing to limitations imposed by the surface environment and economic
factor. To address this issue, interpolation is an economical solution. The cur-
rent state of the art methods for seismic data interpolation are iterative meth-
ods. However, iterative methods tend to incur high computational cost which
restricts their application in cases of large, high-dimensional datasets. Hence, we
developed a two-step non-iterative method to interpolate nonstationary seismic
data based on streaming prediction filters (SPFs) with varying smoothness in
the time-space domain; and we extended these filters to two spatial dimensions.
Streaming computation, which is the kernel of the method, directly calculates
the coefficients of nonstationary SPF in the overdetermined equation with local
smoothness constraints. In addition to the traditional streaming prediction-error
filter (PEF), we proposed a similarity matrix to improve the constraint condi-
tion where the smoothness characteristics of the adjacent filter coefficient change
with the varying data. We also designed non-causal in space filters for inter-
polation by using several neighboring traces around the target traces to predict
the signal; this was performed to obtain more accurate interpolated results than
those from the causal in space version. Compared with Fourier Projection onto a
Convex Sets (POCS) interpolation method, the proposed method has the advan-
tages such as fast computational speed and nonstationary event reconstruction.
The application of the proposed method on synthetic and nonstationary field
data showed that it can successfully interpolate high-dimensional data with low
computational cost and reasonable accuracy even in the presence of aliased and
conflicting events.
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INTRODUCTION

In seismic exploration, high-quality seismic data acquisition is a key ingredient in
creating accurate subsurface interpretations, due to cost and access limitations, it
is often impossible to achieve ideal surface sampling of sources and receivers where
all spatial directions are well sampled. Therefore, there is often a need to regularize
and interpolate the recorded seismic data at an early stage of the seismic processing
workflow.

In past decades, several methods for seismic data interpolation have been pro-
posed, and these include two major categories, which are based on the theories of
wave dynamics and image analysis. According to the physical characteristics of seis-
mic wave propagation, different types of integral continuous operators have proved
their effectiveness for seismic data interpolation, such as shot continuation operators
(Mazzucchelli et al., 1999) and offset continuation operators (Fomel, 2003). Inter-
ferometry is also used for interpolation of missing seismic data (Wang et al., 2009).
Recently, new theories in signal processing such as compressive sensing (CS) and
machine learning (ML) have shown great potential in reconstructing seismic traces.
CS-based methods for data interpolation assume that seismic data obey sparsity
when transformed to an appropriate domain, such as curvelet transform (Herrmann
and Hennenfent, 2008; Naghizadeh and Sacchi, 2010; Yang and Gao, 2012; Shahidi
et al., 2013), Radon transform (Jager et al., 2002; Shao et al., 2017), dreamlet trans-
form (Wang et al., 2015), and seislet transform (Liu and Fomel, 2010; Liu et al.,
2015). Moreover, application of machine learning in seismic exploration is a hot topic
and it is expected to aid in interpolating missing seismic traces. Jia et al. (2018)
used a Monte Carlo method for intelligent interpolation to reduce the cost of training
sets. Wang et al. (2019) designed an eight-layer residual learning networks (ResNets)
for regularly missing data reconstruction. Wang et al. (2020) explored a convolu-
tional auto-encoder (CAE) method for interpolating irregularly sampled shot gathers
by introducing transfer learning strategy. Machine learning methods depend on the
characteristics of the training data, which can overcome the assumptions of linear
events, sparsity, or low rank (Jia and Ma, 2017); however, the accuracy of the inter-
polated results is limited by the similarity of the characteristics between the training
data and the processed data.

Prediction-based interpolation methods are important approaches for seismic data
interpolation, and it involves both characteristics of seismic phase-shift operator and
signal convolution operator. Prediction filters (PFs) or prediction-error filters (PEFs)
can be implemented in the time-space or frequency-space domain. Spitz (1991) ini-
tially proposed f-x PFs for the interpolation of missing seismic data. Porsani (1999)
improved Spitz’s approach by introducing a half-step PF. Wang (2002) further ex-
tended prediction interpolation from the f-z domain to the f-x-y domain. Wang et al.
(2007) also designed a localized f-z-y PF to interpolate 3D seismic data. Naghizadeh
and Sacchi (2009) used exponentially weighted recursive least squares to calculate
adaptive PFs in the f-z domain. Curry and Shan (2010) used multiples and frequency
domain PEFs to interpolate missing data near offsets. Li et al. (2017) proposed a
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multidimensional adaptive PEF to reconstruct seismic data in the frequency domain.
Liu and Chen (2018) developed a prediction interpolation by using f-z regularized
nonstationary autoregression (RNA), which can deal with the events that have space-
varying dips. Zheng et al. (2019) developed a SPF in the f-x domain to interpolate
missing traces, which reduces high computational cost by directly solving an inverse
problem in the complex domain. Meanwhile, time-space PEFs were successfully ap-
plied to reconstruct datasets where the missing data might be regularly or irregularly
represented. Claerbout (1992) first proposed missing-data restoration using PEFs in
the t-x domain. Crawley et al. (1999) described a method for data interpolation with
smoothly varying PEFs, which used “steering filters” to control the smoothness of
the filters. Curry (2003) developed a nonstationary, multi-scale PEF's to interpolate
irregularly-sampled data. Liu and Fomel (2011) restored decimated and randomly
missing traces based on RNA in the time domain, which uses shaping regularization
to control the smoothness of adaptive PEFs. Liu et al. (2018) proposed a 3D t-z-
y multiscale multidirectional adaptive PEF to simultaneously reconstruct randomly
and regularly missing data. Compared with f-z PF, a t-z PF could avoid the gener-
ation of false events in the presence of strong parallel events (Abma and Claerbout,
1995). This is because of the ability of t-z prediction, to control the length of the
PFs in time. To reduce computational time and storage, Fomel and Claerbout (2016)
proposed noniterative streaming PEFs to recover holes in 2D images.

In this paper, we proposed an SPF with varying smoothness in the time-space
domain to reconstruct irregular and regular missing seismic traces; in this method,
SPFs are extended from one to two spatial dimensions. The proposed method in-
volves a two-step strategy (Claerbout, 1992; Crawley et al., 1999). In comparison
with streaming PEFs (Fomel and Claerbout, 2016), we presented a similarity matrix
to restrict the underdetermined least-squares problem of SPF, which enables regu-
larization term to change with seismic data. We also designed a non-causal in space
SPF to further improve the accuracy of interpolation and we compare its results
with those from a causal in space filter. The proposed method shows the superi-
ority of synchronous data reconstruction with irregular and regular missing seismic
traces. Synthetic and field data tests demonstrate the effectiveness and efficiency of
the proposed SPF method in reconstructing missing seismic data.

THEORY

Data interpolation can be cast as an inverse problem where the interpolated data can
have minimum energy after specified filtering (Claerbout, 1992). A PEF can capture
the inverse spectra of the data, thus a variety of PEFs have been used to find the
missing data. Unlike the relationship between frequency-space PF and PEF, time-
space PF has different coefficients from the corresponding PEF that involves causal
time prediction coefficients along the column of the predicted data. The PEF creates
the residual and the PF result is the data itself. Time-space PF only preserves spatial
predictability in seismic data, therefore, it may provide more reasonable interpola-
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tion results than time-space PEF, especially in field non-white noise environments.
Data interpolation is commonly implemented as a two-step approach, which includes
unknown PF estimation from the known data and missing data reconstruction from
the calculated PF. Most adaptive PF's and PEFs based on iterative or recursive ap-
proaches are capable of handling the nonstationarity of seismic data, but iterations
lead to high computation time and large storage requirements for variable coefficients.
In this study, we propose a non-iterative, fast, adaptive PF that acts in the time-space
domain.

Step 1: The t-z-y SPF estimation

Linear events with different constant dips can be predicted by a PF or an autoregres-
sion operator in the time-space domain, which is calculated to minimize the energy of
the prediction error. Consider a 3D t-z-y PF a; j; to predict a given centered sample
d(t,x,y) of data:

txy Z Z Zaz,gkt37y dijr(t:z,y), (1)

i=—L j=—M k=—
j#0 k;éo
where d; ; i (t,,y) represents the translation of d(¢, z,y) with time shifts i and space
shifts 7 and k, nonstationary filter coefficients a; ;x(t,z,y) change with time and
space axes, and L, M, and N control the lengths of the filter along ¢, x, and y-axes,
respectively.

In linear algebra notation, the filter coefficients a; ; ; are determined by minimizing
the underdetermined least-squares problem:

a(t,z,y) = arg min || d(t,z,y) — d(t,z,y)"alt,z,y) |3, (2)

a(t,z,y)

where a(t, z, y) represents the vector of filter coefficients and d(¢, z,y) represents the
vector of data translations d; (¢, z,y). For nonstationary situations, we can use dif-
ferent regularization term to constrain equation 2, such as global smoothness (Liu and
Fomel, 2011). Sacchi and Naghizadeh (2009) introduced a local smoothness constraint
to calculate the adaptive prediction filter. Fomel and Claerbout (2016) proposed the
same constraint and solved the algebraic problem analytically with streaming com-
putation, which demonstrated the same results as Sacchi and Naghizadeh’s method.
The local constraint is that the new filter a stays close to the prior neighboring filter a,
fa ~ £a, where £ is a scale parameter. However, the regularization term occasionally
fails in the presence of strong amplitude variation. Thus, we improved the constraint
with varying smoothness. The SPF in the t-z-y domain was found by solving the
least-squares problem:
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a(t,2,y) = arg min | d(t,z,y)—d(t,z,y)"alt,z,y) 3+ > & | alt,z,y)-E.an(t,z,9) |3,

n=t,r,y

(3)
where E,, is the similarity matrix, which controls the closeness between the adjacent
filters. For the design of E,,, we can use the data value and follow three principles:
1. Usage of PF to characterize the energy spectra of data; hence, both the adjacent
data and the adjacent PFs are similar based on local plane wave assumption. There-
fore, E,, should be close to identity matrix.
2. Data value is not be used alone in the expression of E,,; otherwise, the calculation
will be unstable because there exists large number of data with zero value in the
missing seismic data.
3. The variation of data value can reasonably control the local smoothness of filter
coefficients.

In this study, we designed the E,, based on the amplitude difference of the smoothed
data:

146, % (dp_y — dy,) 0 ~ 0
no| 0 ek
0 0 R 6n * (Jnfz — CZn,i+1>

(4)
where 0,, is the sale factor and d represent the smooth version of data that are less
affected by random noise, e.g., the preprocessed data using Gaussian filter.

In a 3D case, the regularization term in equation 3 should include three directions:

Ga(t,r,y) =~ EEalt — 1,1, y)
Sxa(t> xz, y) ~~ ngxa(ta x—1, y) (5)
fya(t7 xZ, y) ~ nyya(t, T,y — 1)

The least-squares solution of equation 3 is:

a(t,z,y) = [d(t,z,y)d(t, z,y)" + N7 d(t, 2, y)d(t, ,y) + £7a(t,2,y)],  (6)

where

§Ea(t —1,2,y) + EEat, o — 1,y) + EEjalt, r,y — 1)
& M

a(t,z,y) =
E=g+e+¢,
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and I is the identity matrix. The regularization terms &, should have the same order
of magnitude as the data. From equation 7, we can consider £2E,, as a whole term,
which provides an adaptive smoothness for the nonstationary PF.

In equation 5, a stable update of SPF requires that the adjacent filter coefficients
have the same order of magnitude, and the stable condition is based on the selection
of the parameters d,, and &,. We can calculate the difference between the maximum
and minimum values in the data, and ¢,, is selected as the reciprocal of this difference
to guarantee that E, may be close to the identity matrix. Meanwhile, the parameter
&, should be chosen to the constant value between the minimum and maximum values
of the data according to the smoothness level of the regularization.

The inverse matrix in equation 6 can be directly calculated without iterative
conjugate-gradient method. Sherman-Morrison formula (Hager, 1989) provided an
analytic solution for the inverse of a special matrix like (A — BC)™!, where matrix B
is a column vector and matrix C is a row vector. If A and I — CA~'B are invertible,
the inverse matrix results in:

(A-BC)'=A"T1T+A'BI-CA'B)"'CA . (8)

In this paper, A = €21, B = —d(t,z,y), and C = d(t,z,y)? in equation 8. After
algebraic simplification, the filter coefficients arrive at the explicit solution as given

below:
d(t7 x, y) B d(ta z, y)Té(t7 T, y)

£ +d(t, z,y)Td(t, z,y)

a(t,z,y) =a(t,z,y) + d(t,z,y), (9)

Step 2: Data interpolation with t-x-y SPF

The SPF error 7(t,x,y) can be expressed as follows:
(t,z,y) —d(t, =, y)"a(t, 2,y)
& +d(t, z,y)d(t, z,y)

equation 10 shares the same form as the second term in the right hand side of equa-
tion 9. Substituting equation 10 into equation 9, we obtain equation 11:

rt,ayy) = d(t,,y) — d(t, o y)a(t 2, y) = 2

t) )
7( gﬂé y)d

When a missing data is encountered, r(t,z,y) can be assigned as zero, and equa-
tion 9 can be reduced to:

a(t,z,y) = a(t,x,y) + (t,x,y). (11)

a(t,z,y) = a(t,z,y). (12)
Therefore, the data interpolation is also implemented in a streaming manner, where

the missing data are reconstructed right after the unknown filter gets updated, and
the interpolated data is shown as:

d(t,z,y) = d(t,z,y)Ta(t, z,y) = d(t, z,y)"a(t, z, y). (13)
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The field data always includes noise, hence the interpolated traces with noise is more
realistic, where the prediction error r(¢,z,y) is set to a small random noise.

To use the available data for SPF estimation, we designed a 3D t-z-y non-causal
in space SPF shown in Figure la, the light-gray grids represent prediction samples
and the dark-gray ones exhibit target positions, whereas white grids represent unused
samples. Non-causal in space SPF utilizes more adjoining traces around the target
traces to predict signals, therefore, it can provide more accurate interpolated results
than the causal in space version. The interpolation steps in the 2D case are illustrated
schematically in Figure 1b. The black and white circles represent the known data
and the missing data, respectively. Meanwhile, the dotted part is the prior non-
causal SPF position, and dark-grey triangle is the target position. When the target
position is known, the SPF coefficients a(¢,x,y) can be obtained from equation 9.
In streaming computation, we can use the time or space axis as the interpolation
direction. The light-gray area in Figure 1b is the position where the SPF moves next,
and the target trace becomes missing data. Further, spatial gaps are reconstructed
according to equation 12 and 13. Note that the prior filter coefficients are required
in this calculation. If the first target position is missing trace, e.g., marine data with
near-offset missing, one may use the mirror data to initialize the coefficients of SPF
in the space directions.

We also interpolated the results in the forward and backward spatial directions;
adding the two results dsum = (dforw + dback) /2 can reduce the interpolated error
caused by the directional properties of the streaming computation, where d ¢4, is the
forward interpolated result and dp. is the backward one. The proposed method uses
local varying smoothness of SPF to characterize time-space variation of nonstationary
data, the analytical calculation of the inverse matrix in equation 6 avoids iteration,
which results in superior computational speed. Table 1 compares the computational
cost between 3D Fourier POCS (Abma and Kabir, 2006) and the 3D ¢-z-y SPF. The
proposed method occupies less computational resources by reducing the cost to a
single convolution.

Method Cost Filter storage
3D Fourier POCS | O(N;N,N,log(N;NyNy)Niter) | O(Ny Ny, Ni, )
t-z-y SPF O(NoN¢N,N,) O(NoN;Ny)

Table 1: Rough cost comparison between 3D Fourier POCS and t-z-y SPF. N, is the
filter size, Ny, is the number of iterations length, N, is the data length in the time
direction, IV, and N, are the data length in the space directions, Ny is the data size
along frequency axis, and N, and N, are the data size along wavenumber k, and
k, axis, respectively.
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Figure 1: (a) Schematic illustration of a 3D non-causal in space SPF and (b) inter-
polation process.
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SYNTHETIC DATA TESTS
2D nonstationary missing-trace interpolation test

We utilized a 2D synthetic model composed of nonstationary events with conflicting
dips to test the effectiveness of the proposed method (Figure 2a). Two curved events
and one dipping event show different amplitudes. We removed 40% of randomly
selected traces specially at the intersecting position (Figure 2b). For comparison, we
used a 2D Fourier POCS with 19x8 patches and a conventional streaming PEF (Fomel
and Claerbout, 2016) to interpolate the missing traces (Figure 3a and Figure 3b).
The size of each patch was set as 40x50 and the iteration number was selected to
be 150 in the Fourier POCS method. The interpolated results using the SPF with
causal and non-causal filters are shown in Figure 3c and Figure 3d, respectively.
The difference between the reconstructed traces and the original traces is shown in
Figure 4. For space non-causal filters, we designed a 2D t-z SPF with 25 (time) x
23 (space) coefficients and scalar parameters of & = 0.05, £, = 0.8, §; = 0.5, and d,
= 0.5 for each sample. The 2D Fourier POCS method with patching windows and
SPF with causal filters produced similar results, except that more spatial aliasing
was generated for the POCS method. The conventional streaming PEF has evident
spatial aliasing at the cross position of the events and the lower right corner due
to the helix transform. However, the proposed method reconstructed a reasonable
result, where the interpolation errors were substantially reduced. The CPU times,
for a single 2.10 GHZ CPU used in this study, were 2.68 s for the 2D Fourier POCS
and 0.90 s for the proposed method.

Trace
100

(a)

Figure 2: (a) Synthetic data with three events and (b) model with 40% randomly
selected traces removed.

2D aliasing decimated-trace interpolation test

A benchmark example from Claerbout (2009) showed a strongly aliased gather. The
number of space samples was set to 30. We used the two-step approach based on the
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Trace Trace

Trace Trace

Figure 3: Reconstructed results by using different methods. (a) The 2D Fourier
POCS, (b) the 2D streaming PEF, the 2D ¢-z SPF with (c¢) causal filter, and (d)
non-causal filter.
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Trace Trace

Time (s)
Time (s)

Trace

Time (s)

(c) (d)
Figure 4: Interpolation errors by using different methods. (a) The 2D Fourier POCS,

(b) the 2D streaming PEF, the 2D t-x SPF with (c) causal filter, and (d) non-causal
filter.
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t-z SPF to insert three additional traces between each of the adjointing input traces.
We designed the SPF using 19 (time) x 11 (space) coefficients for each sample. The
four scale parameters were 0.3 (&), 0.2 (&), 0.12 (&), and 0.12 (6,). The proposed
method effectively removed the spatial aliasing artifacts (Figure 5b). The SPF com-
pared well with the plane-wave destruction (PWD) (Fomel, 2002) and adaptive PEF
(Liu and Fomel, 2011), and showed higher efficiency in computational speed. The
adaptive PEF methods were based on scale invariance for regular trace interpolation
by interlacing the filter coefficients with zeros, however, the SPF methods cannot use
the scale invariance because SPF is a local algorithm, which reconstructs decimated
traces similar to missing traces. The CPU times, for single 2.10 GHZ CPU, were 1.18
s for the t-x SPF, 43.91 s for the PWD, and 10.71 s for the adaptive PEF.

Position Position
6 8 10 12 14 16 18 20 22

6 8 10 12 14 16 18 20 22

'.""lll

—-__-
—-___
==
—rt

II IIIII::::: .

\

§

(a)

Figure 5: (a) Aliased synthetic model and (b) trace interpolation with the 2D t-x
SPF. The interpolated data has four times more traces than the original model.

3D synthetic data test

We created a 3D prestack dataset (Figure 6a) from a 2D slice out of the benchmark
French model (French, 1974), and the data was subsampled by a factor of two in both
offset and shot axes, which caused visible aliasing of dipping events. Furthermore, we
removed 15% of randomly selected traces from the decimated data. The data inter-
leaved with zero traces along the offset and shot directions is shown in Figure 6b. The
challenge of this test was to account for nonstationarity, aliasing, both decimated and
irregular missing traces, and computational cost. Figure 7a and Figure 7b display
the interpolated result using 3D Fourier POCS and the conventional 3D t-z-y SPF,
respectively. Notably, the Fourier POCS method can only recover randomly missing
traces, and it fails in handling regularly missing traces. For the proposed 3D t-z-y
SPF, the choices of the filter length were seven samples in time axis, nine samples in
the offset axis, and three samples in the shot axis. We designed the scale parameters,
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& =04, & =05, =04, and 6; = 6, = 6, = 0.01, to deal with the variability
of events. The conventional 3D t-z-y SPF did not recover the decimated data well.
However, the proposed method succeeded in interpolating irregular and regular miss-
ing traces simultaneously (Figure 7c), which produced reasonable results for curved
events. The CPU times of the 3D Fourier POCS with 500 iterations and the 3D t-z-y
SPF were 889.21 s and 33.72 s, respectively.
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(a) (b)

Figure 6: (a) 3D synthetic prestack data and (b) missing data interleaved with zero
traces.

FIELD DATA EXAMPLE

To evaluate the performance of the t-z-y SPF interpolation method in 3D field condi-
tions, we chose a set of marine shot gathers from a deep-water Gulf of Mexico survey
(Fomel, 2002; Liu and Fomel, 2011). Figure 8a shows the complicated diffraction
events caused by a salt body. We selected 35% traces of the input data by sub-
sampling in the shot direction and removing 30% random traces (Figure 8b). For
comparison, we used 3D Fourier POCS method and the conventional SPF to recon-
struct the missing traces (Figure 9a and 9b, respectively). The Fourier POCS method
also failed to interpolate the decimated traces and created some artificial events at
the locations of the randomly-missing traces. The interpolated result could be par-
tially improved by slicing data into patching windows. The conventional 3D t-z-y
SPF also failed to recover the decimated data. Figure 9c shows that the proposed
t-z-y SPF method produced better result, in which the missing gaps were recovered
reasonable well, except for weaker amplitude in the common-offset sections. Figure 10
provides the f-k spectra corresponding to the original data and interpolated results
with the Fourier POCS, the conventional 3D ¢-z-y SPF, and the proposed 3D t-z-y
SPF, respectively. Figure 11 show the interpolation errors using these methods. The
simultaneous occurrence of regular and irregular data missing is a challenge in the
interpolation process. The proposed 3D t-z-y SPF method shows more reasonable
results than the Fourier POCS and the conventional streaming PEF. Meanwhile, the
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Figure 7: Reconstructed data volumes using different methods. (a) The 3D Fourier
POCS, (b) the conventional 3D ¢t-z-y SPF, and (c) the proposed 3D t-z-y SPF.
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proposed algorithm is more efficient, and the CPU times for the 3D POCS with 500
iterations was 380.42 s whereas those of the 3D t-x-y SPF was 12.27 s.

50 100 150 0 20 50 100 150 0 20
Trace Shot Trace Shot

(a) (b)

Figure 8: (a) A 3D field dataset and (b) data after subsampling in the shot direction
and 30% randomly selected traces removed.

DISCUSSION

The extension of SPF to higher dimensions is straightforward, hence more space
constrains have to be applied to the algorithm. For three spatial dimensions, we use
spatial axes x, y and z, and the new filter coefficients by changing equation 3 show
as given below:

a(t,x,y,z) =arg aér;igz) | d(t,z,y, z) —d(t, z,v, z)Ta(t,x,y, z) ||§ +

Z 5727, ” a(t,x,y,z) - Enf_in(t,,l’,y,Z) ||§ :

n=t,z,y,z

(14)

The least-squares solution of equation 14 is

a(t7 ‘/EJ y? Z) - I:d(tJ x7 y7 Z)d(t7 ‘/EJ y? Z)T + 521]_1[d(t7 CE, y7 Z)d(t7 x? y) z) + £25'(t7 m? y7 Z)]?
(15)
where

EEalt —1,2,y,2) + EEa(t, z — 1,y,2) + EBja(t,z,y — 1,2) + EE.a(t, z,y, 2 — 1)

é(t,l’,y,Z) -

E=g+&++¢.

52
(16)
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Figure 9: Interpolated results using different methods. (a) The 3D Fourier POCS,
(b) the conventional 3D t-z-y SPF, and (c) the proposed 3D t-z-y SPF.
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Figure 10: The f-k spectra for different data. (a) Original data (Figure 8a), (b) data
in Figure 9a, (c) data in Figure 9b, and (d) data in Figure 9c.
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Figure 11: Interpolation errors using different methods. (a) The 3D Fourier POCS,
(b) the conventional 3D t-z-y SPF, and (c) the proposed 3D t-z-y SPF.
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Thus, the difference is the increased storage of the z-axis filter coefficients.

For low-amplitude events in field data, an AGC could be applied to the data before
filter estimation to help ensure that low amplitude events are given equal attention
in the SPF estimation. In practice, the prestack 3D traces could be described in
5D space (xg, Ys, Zr, Yr, t), where (z4, ys) and (x,, y,) are the source and receiver
coordinates. We can extract 3D seismic gathers from 5D space and use t-z-y SPF
to interpolate the prestack 3D traces. Considering the spatial similarity of seismic
events, it is recommended to implement the proposed method in the cmp-cmpline-
offset-azimuth domain. Theoretically, any two spatial dimensions can be extracted
from four spatial dimensions for interpolation; however, the accuracy of interpolated
result depends on the number of missing traces and complexity in the 3D seismic
gathers.

CONCLUSIONS

In this study, we proposed a fast approach based on SPF for simultaneously recon-
structing irregular and regular missing traces in the ¢t-z-y domain. With the help of
local smoothness constraints, we defined a streaming computation manner to calcu-
late nonstationary PF without multiple iterations. The invertible characteristics of
SPF has direct applications, such as for seismic data interpolation. The non-causal
in space filter structure and the similarity matrix guaranteed the accuracy of the
interpolation results. Compared with the Fourier POCS method, the t-z-y SPF can
characterize reasonably nonstationary signal while avoiding artifacts that occur in the
frequency domain method. Moreover, the proposed method is superior in terms of
its computational cost. Experiments with synthetic examples and field data demon-
strated that the t-z-y SPF is effective at efficiently recovering irregular and regular
missing traces in nonstationary seismic data.
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