next up previous [pdf]

Next: Derivation of the FIR Up: Appendix A: Hilbert transform Previous: Appendix A: Hilbert transform

Derivation of the FIR transfer function for the frequency response of digital differentiators

First, to characterize the FIR for signal differentiators, we transform the Leibniz series $ \displaystyle\frac{2{\rm {arcsin}}x}{\sqrt{1-x^2}}$ to power series (Lehmer, 1985)

$\displaystyle \frac{2{\rm {arcsin}}x}{\sqrt{1-x^2}}=2x \left[1+\sum_{m=1}^{\infty}\frac{(2{\rm {m}})!!} {(2{\rm {m}}+1)!!}x^{2m}\right].$ (11)

We substitute sin $ \displaystyle(\frac{\omega}{2})$ for $ x$ , and after rearrangement and truncation of the first $ M$ terms, we obtain

\begin{displaymath}\begin{split}& \frac{\omega}{\sqrt{1-{\rm {sin}}^{2}\displays...
...m}+ o((\frac{1-{\rm {cos}}\omega}{2})^{M+1})\right] \end{split}\end{displaymath} (12)

and after manipulation

\begin{displaymath}\begin{split}\omega & =2{\rm {sin}}\frac{\omega}{2}{\rm {cos}...
...}+ o((\frac{1-{\rm {cos}}\omega}{2})^{M+1})\right]. \end{split}\end{displaymath} (13)

We ignore the higher order terms and we obtain the $ (2M+2)$ th-order causal transfer function of the derivative operator as

$\displaystyle \hat{F}_{DD}(z)\approx-\frac{1-z^{-2}}{2}\left\{z^{-M}+ \sum_{m=1...
...\rm {m}}+ 1)!!}{\cdot}z^{-(M-m)}\left[-\frac{(1-z^{-1})^2}{4}\right]^m\right\}.$ (14)


next up previous [pdf]

Next: Derivation of the FIR Up: Appendix A: Hilbert transform Previous: Appendix A: Hilbert transform

2015-05-07