next up previous [pdf]

Next: Shaping regularization Up: Spatial interpolation contest Previous: Gradient regularization

Helical derivative preconditioning

An alternative to the optimization problem (5) is the problem of minimizing $\vert\mathbf{x}\vert^2+\vert\mathbf{r}\vert^2$ under the constraint

\begin{displaymath}
\mathbf{F} \mathbf{P} \mathbf{x} + \epsilon \mathbf{r} = \mathbf{d}\;.
\end{displaymath} (6)

The model $\mathbf{m}$ is defined by $\mathbf{m} = \mathbf{P} \mathbf{x}$, and the preconditioning operator $\mathbf{P}$ is related to the regularization operator $\mathbf{R}$ according to
\begin{displaymath}
\mathbf{P} \mathbf{P}^T = \left(\mathbf{R}^T \mathbf{R}\right)^{-1}\;.
\end{displaymath} (7)

The autocorrelation of the gradient filter $\mathbf{R}^T \mathbf{R}$ is the Laplacian filter, which can be represented as a five-point polynomial

\begin{displaymath}
L_2(Z_1,Z_2) = 4 - Z_1 - Z_1^{-1} - Z_2 - Z_2^{-1}\;.
\end{displaymath} (8)

To invert the Laplacian filter, we can put on a helix, where it takes the form
\begin{displaymath}
L_H(Z) = 4 - Z - Z^{-1} - Z^{N_1} - Z^{-N_1}\;,
\end{displaymath} (9)

and factor it into two minimum-phase parts $L_H(Z) = D(Z) D(1/Z)$ using the Wilson-Burg algorithm (Fomel et al., 2003).

inter1
inter1
Figure 9.
Rainfall data interpolated using preconditioning with the inverse helical filter.
[pdf] [png] [scons]

Figure 9 shows the interpolation result using conjugate-gradient optimization with equation (6) after 10 and 100 iterations. The corresponding correlation analysis is shown in Figure 10.

inter1-100-pred
Figure 10.
Correlation between interpolated and true data values for preconditioning with 100 iterations.
inter1-100-pred
[pdf] [png] [scons]


next up previous [pdf]

Next: Shaping regularization Up: Spatial interpolation contest Previous: Gradient regularization

2022-10-19